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Drug-repurposing technologies are growing in number and
maturing. However, comparisons to each other and to reality
are hindered because of a lack of consensus with respect to
performance evaluation. Such comparability is necessary to
determine scientific merit and to ensure that only meaningful
predictions from repurposing technologies carry through to
further validation and eventual patient use. Here, we review
and compare performance evaluation measures for these tech-
nologies using version 2 of our shotgun repurposing Computa-
tional Analysis of Novel Drug Opportunities (CANDO) platform
to illustrate their benefits, drawbacks, and limitations. Under-
standing and using different performance evaluation metrics
ensures robust cross-platform comparability, enabling us to
continue to strive toward optimal repurposing by decreasing
the time and cost of drug discovery and development.
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Introduction
Drug-repurposing technologies allow us to predict new uses for
previously approved drugs.1 Although the drug discovery process
normally takes years of work and costs billions of dollars, drug
repurposing lowers barriers to the entry of a drug to the mar-
ket.2–4 The ultimate goal of repurposing research is to decrease
the time and cost of drug discovery and development by accu-
rately predicting clinical utility and using the predictions to
improve health and quality of life. Successful instances of drug
repurposing have been based on anecdotal evidence, in vitro
and in vivo screening, and discovery of serendipitous positive
effects in clinical trials or analysis of patient health records
post-market.5 Drug-repurposing technologies aim to make this
process systematic and skip intermediate steps (Fig. 1).

Specific goals of drug repurposing differ based on their even-
tual utility. For a pharmaceutical company, a specific goal might
be to find a single blockbuster drug that changes the default
treatment of a condition shared by millions, such as hyperten-
sion.6 A basic science drug-repurposing approach at an academic
institution might focus more on public benefit and less on mon-
etary outcomes, such as to find a treatment for an orphan or rare
FIGURE 1
The relationship between drug-repurposing technologies and traditional approa
costly, moving from preclinical research (basic computational methods, intensi
drug approval. The ideal scenario is a clinician/physician utilizing results of dru
Opportunities (CANDO)] directly, prescribing medication with high confidence
patient outcomes. In this future guided by using the best evaluation metrics, r
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disease.7 Less-defined end goals (high risk) enable researchers to
systematically disrupt the entire drug discovery and develop-
ment process (high reward). Drug-repurposing technologies,
such as our CANDO platform,8–18 are used to systematically pre-
dict the relative efficacy of every drug in its comprehensive
library to treat every disease/indication, minimizing risks, and
amplifying rewards. In conjunction with mechanistic basic
science analyses, these platforms may be used to better under-
stand the science of drug behavior and thereby model reality
with greater fidelity.

Distinctions between noncomputational and computational
drug-repurposing technologies are blurring. Experiments desig-
nated as computational might rely on data collected in a bench
environment, such as protein–ligand binding energy measure-
ment and gene expression studies.19 Bench experiments might
have used computational tools, such as homology modeling or
molecular docking software,20 and computational studies are
often externally validated or supplemented by in vitro and
in vivo laboratory experiments.21 In this review and associated
analyses, we focus largely on performance evaluation of compu-
tational technologies; however, the metrics discussed herein are
Drug Discovery Today

ches. Traditional drug discovery and development are time consuming and
ve in vitro and/or in vivo screening) to testing in clinical trials and eventual
g-repurposing technologies [such as Computational Analysis of Novel Drug
to treat numerous indications, thereby saving time, cost, and improving

epurposing technologies have high comparability and fidelity to reality.
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applicable broadly to drug repurposing, that is, any technology
that generates novel therapeutic repurposing candidates by
benchmarking drug–indication association predictions.

Most previous reviews of drug-repurposing technologies have
focused on methods development,4,22–36 with only a few provid-
ing cursory analyses of evaluation of those methods.30,36,37

Brown and Patel previously reported a review of ‘validation’
strategies for computational drug repurposing,38 broadly catego-
rizing various evaluation metrics into ‘(1) validation with a single
example or case study of a single disease area, (2) sensitivity-
based validation only and (3) both sensitivity- and specificity-
based validation’.38 Shahreza et al., in reviewing network-based
approaches to drug repurposing, mention various evaluation cri-
teria used in different studies and provide mathematical aspects
of the relationship between some of them.31

Here, we augment and enhance their foundational reporting
by describing, reviewing, and analyzing metrics for evaluating
the performance of drug-repurposing technologies. We highlight
uses of metrics borrowed from the realms of virtual screening/tar-
get prediction and information retrieval, and report results of
their integration into CANDO. Through the use of better evalua-
tion metrics, we aim to make drug-repurposing science more rig-
orous and comparable. This study will help enable proper
evaluation of drug-repurposing technologies, and ultimately
guide the field to bring about real changes in the armamentarium
of medicine to alleviate disease burden.
CANDO
We developed and deployed the CANDO platform to model the
relationships between every disease/indication and every human
use drug/compound.8–18 Built upon the premise of polypharma-
cology and multitargeting, at the core of CANDO is the ability to
infer similarity of compound/drug behavior. Canonically, we use
molecular-docking protocols to evaluate the interaction between
large libraries of drugs/compounds and protein structures. We
then construct a compound–proteome interaction signature to
characterize and quantify their behavior. Based on the similarity
of these interaction signatures, we rank every drug/compound
relative to every other. We hypothesize that drugs/compounds
with similar interaction signatures could be repurposed for the
same indication(s).

Since the development and application of CANDO version
1,8–11 we have continued to enhance our platform by analyzing
the effect of protein subsets on drug behavior, implementing
heterogeneous measures of drug/compound similarity, using
multiple molecular-docking software packages to evaluate inter-
actions, and refining nonsimilarity-based approaches for drug
repurposing in situations where there is no approved drug for a
disease/indication.12–18,39
CANDO v2
Version 2 of the CANDO platform (v2) described here, imple-
menting updated drug/compound and protein structure
libraries, indication lists, drug–indication mappings, interaction
scoring protocols, benchmarking and evaluation metrics, along
with data fusion of multiple pipelines mixing and matching
between these choices, is used as a template for the rigorous eval-
uation of the performance of drug repurposing technologies. The
core tenets remain the same as in CANDO v1; however, the
updated data and evaluation metrics enable us to better deter-
mine the correctness of those predictions with greater cross-
platform comparability, as well as agreement with preclinical
and clinical validation experiments.

Curation of drug/compound and protein structure libraries
The v2 compound library contains 2162 US Food and Drug
Administration (FDA)-approved drugs extracted from DrugBank
5.0.40 We have also created a larger library of 8752 compounds
from DrugBank containing both approved drugs and experimen-
tal/investigational compounds. The updated protein library con-
tains a nonredundant set of 14 606 solved structures compiled
from the Protein Data Bank (PDB).41 Supplementing the
approved drugs with compounds that are in the final stages of
the drug development process helps to expand the repurposing
capabilities of the platform. The updated protein structure library
comprises individual chains from numerous proteomes with an
equitable distribution of folds and binding sites, allowing for
greater coverage because of homology while reducing bias.

Interaction scoring
The default pipeline in CANDO v2 uses an enhanced version of
our previous bioinformatic docking protocol for interaction scor-
ing.9 We altered the previous protocol by using extended con-
nectivity fingerprints from RDKit42 instead of FP2 fingerprints
from OpenBabel43 as our cheminformatic approach for drug/-
compound molecular fingerprinting. The other major modifica-
tion was to use COACH to predict protein structure binding
sites.44 COACH leverages the results from multiple binding-site
prediction software suites, including COFACTOR, which we pre-
viously used exclusively. The use of the updated fingerprints and
COACH results in higher fidelity to reality for the resulting inter-
action scores from the bioanalytics-based docking (BANDOCK)
protocol, as evaluated by comparing results to observed com-
pound–protein interaction binding constants obtained from
PDBBind.13

Drug/compound characterization, benchmarking, evaluation
metrics, and performance
The default pipeline in CANDO v2 generates drug–proteome
interaction signatures by calculating scores between all 2162
drugs and all 14 606 proteins using the BANDOCK protocol.
Every drug is characterized by a unique vector of interaction
scores. We measure the pairwise similarity/distance between
the interaction signatures from each of the 2162 drugs to every
other. We evaluated a variety of similarity measures between a
pair of interaction signatures and found success using the root
mean squared deviation (RMSD), which is the default measure,
and the cosine distance.45 We then sort drugs relative to one
another according to their similarity (i.e., those with the greatest
similarity to each other are ranked highest).

Each drug is associated with one or more approved indica-
tions, comprising our standard to which we compare our rank-
ings (also known as a ‘gold standard’ or ‘ground truth’). These
associations, or drug–indication mapping, is derived from curat-
ing the Comparative Toxicogenomics Database (CTD),46 which
www.drugdiscoverytoday.com 51
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uses medical subject headings (MeSH) to label indications.47 This
yields 18 709 associations for the 2162 drugs covering a total of
2178 indications. The default benchmarking protocol imple-
ments an in-house leave-one-out procedure to accurately identify
related compounds approved for the same indication.9,16 For
every indication associated with a drug, we calculate the ranks
of other drugs associated with that same indication, and whether
any positive hit occurs within certain cutoffs, such as top10,
top25, and so on, representing the top 10 and 25 most similar
drugs. For each indication, we calculate the percentage of associ-
ated drugs that achieve a hit in that cutoff. We next calculate the
mean of all per-indication accuracies to give an overall evalua-
tion of the platform, referred to as the average indication accu-
racy (AIA).9,16

For drug repurposing, our small-molecule library is limited to
the 2162 approved drugs, but CANDO is capable of analyzing
compounds that are not yet approved in a similar fashion. Simi-
lar drugs/compounds not associated with the same indication are
hypothesized to be novel repurposed therapies to be validated
via external preclinical and clinical studies.

Consider our results for the indication melanoma (MeSH ID:
D008545), which is associated with a curated list of 58 drugs
from the CTD. CANDO predicts 23 of those 58 drugs to have
another associated with melanoma within their respective top
10 most-similar proteomic interaction signatures. Therefore,
the top10 indication accuracy for melanoma is 23/58 � 100 =
39.6%. We repeat this process for every one of the 2178 indica-
tions to generate the AIA.
FIGURE 2
Mock example of novel treatment prediction for type 2 diabetes mellitus (T2DM
that ranks ten drugs to treat T2DM, with rank one (number above boxes) being t
based on mock scores given below the name of each drug. Classification of com
through five (i.e., the results of a classification and ranking schemes are interc
marked with a blue check or cross, and those with unknown associations are m
the cutoff are the positive results, whereas those worse are the negative results
check) and two with no known association (orange check) ranked better than
Analogously, there are four true negatives (blue cross) and one false negative (or
be the repurposing candidates for the given indication. We also note that the no
of undetermined classification, having never been rigorously scientifically studi
evaluation of drug-repurposing technologies. This is a mock example of a
repurposing platform. Metrics using a single ranking are averaged over many ran
technology.
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For CANDO v1, we achieved a top10 AIA of 11.8%, compared
with a reported random control of 0.2%.9 Using improved bio-
and cheminformatic tools and armed with a better understand-
ing of random controls, theoretically modeled using a hypergeo-
metric distribution and empirically measured using uniformly
random drug–drug similarity data, version 1.5 of CANDO
achieved an average indication accuracy of 12.8% at the top 10
cutoff against a random control of 2.2%.13

The average indication accuracy is not used by others in the
field of drug-repurposing technologies. Thus, although we use
it as a metric for internal comparison (i.e., between individual
CANDO pipelines and versions), the cross-platform applicability
is low. Therefore, we researched other methods of assessing per-
formance, which are now implemented in and applied to
CANDO.
Classification, ranking, metrics, and integration into
CANDO
Experiments using drug-repurposing technologies return results
as a classification or ranking. In classification, compounds are
associated with indications in a binary fashion based on some
criteria, whereas, in a learning-to-rank experiment, entities are
ranked relative to one another in order of some score. Best pair-
ings, designated by a specific rank/classification cutoff/threshold,
are reported as putative therapeutics. A ranking result can be
thought of as classification by using the cutoff as a threshold
for the ranks and declaring items on one side of the threshold
as positive samples and those on the other side as negative sam-
ples. The inverse of modeling classification as a ranking problem
Drug Discovery Today

) by a drug-repurposing technology. We illustrate an arbitrary methodology
he most likely efficacious and rank ten being the least likely. These ranks are
pounds with a score � 0.5 are the same as those ranked in positions one

hangeable). Drugs that have known treatment associations with T2DM are
arked correspondingly in orange. Those drugs classified/ranked better than
. Given that there are three drugs with a known association to T2DM (blue
or equal to rank five, there are three true positives and two false positives.
ange cross). If this were not a mock example, the false positive results would
tion of ‘true negative’ can be misleading, because most such associations are
ed. This lack of negative data in comparison standards is a limitation in the
single ranking among hundreds or thousands in a comprehensive drug
kings to produce values that describe the correctness of a drug-repurposing
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is also true. If a specific cutoff is used for calculation of perfor-
mance, it must be reported, and reporting values at all possible
ranking and classification cutoffs/thresholds will allow for
greater comparability.

An inherent limitation of drug-repurposing technologies and
nearly all metrics we use to report on their goodness is the forced
dichotomization of results, where those drug–indication associa-
tions ranked/classified better than the cutoff/threshold are
labeled ‘positive’ and those worse are ‘negative’, with no nuance
or allowance for real-world considerations, such as first- and
second-line therapies. This lowers the fidelity of all drug-
repurposing models to reality. Fig. 2 illustrates these issues in a
mock example of predicted therapies to treat type 2 diabetes mel-
litus by a drug-repurposing technology.

Drug-repurposing technologies use a multitude of different
metrics to evaluate the performance of the resulting ranking or
classification. These are based on delineation of results into true
positives (TPs), false negatives (FNs), true negatives (TNs), and
false positives (FPs) relative to some standard. Notable com-
monly used metrics include sensitivity (TP rate and recall), speci-
ficity (TN rate), false discovery rate, FP rate precision (positive
predictive value), area under the receiver operating characteristic
curve (ROC and AUROC), precision, precision-recall curves, and
area under precision-recall curves, F1-score, and Matthews corre-
lation coefficient (MCC; see the supplemental information
online).

Results of a drug-repurposing experiment comprising a rank-
ing of drug candidates are similar to those results obtained in vir-
tual screening and target prediction experiments, but the
standard of comparison is different: known drug characteristics
or drug–target associations (binding interactions) as opposed to
known drug–indication associations. Drug repurposing as a field
is not one-to-one with drug target prediction,38 but a drug target
prediction experiment can be part of a repurposing experiment.
Despite this demarcation, metrics used in virtual screening/target
prediction highlighting the ‘early recognition problem’ may be
useful to evaluate drug repurposing.48,49 In both instances, the
goal is to prioritize ranking ‘active’ candidates (known drug–tar-
get or drug–indication associations) at the top. Metrics that con-
sider the early recognition problem properly include the
enrichment factor (EF; see the supplemental information
online), robust initial enhancement (RIE; see the supplemental
information online),50 and the Boltzmann-enhanced discrimina-
tion of ROC (BEDROC).48

In addition to being similar to virtual screening, the results of
drug-repurposing technologies are highly analogous to informa-
tion retrieval. Information retrieval tools, such as web search
engines, can be evaluated in their ability to accurately return a
website link that is desired and subsequently visited by the user
based on some query string. In a drug-repurposing experiment,
this is akin to generating a list of active candidate drugs that
might be a treatment for a given indication. Therefore, the goals
of information retrieval and drug repurposing are similar, and
correspondingly performance metrics that have been explored
for information retrieval have value in drug-repurposing evalua-
tion. These include the mean reciprocal rank (MRR), precision-at-
K (P@K), average precision (AP) and mean average precision
(MAP; see the supplemental information online), and (normal-
ized) discounted cumulative gain [(N)DCG].51

We describe the utility and use of the above-mentioned met-
rics in several computational drug-repurposing experiments. We
report the complete results of using every metric at all cutoffs for
both versions 1.5 and v2 of CANDO in the supplemental infor-
mation online and at our website, and highlight specific results
of interest herein. In general, most metrics have use for internal
intraplatform comparisons but limited use for external interplat-
form comparisons. Based on our analyses, we conclude that the
metrics with the most utility relative to their cost are BEDROC
and NDCG. Additionally, we have integrated many of these mea-
sures into the CANDO platform to facilitate internal and external
comparability. Evaluation of CANDO using these newly inte-
grated metrics has reaffirmed its utility for drug repurposing,
while providing a foundational review of the advantages and
limitations of each metric in the context of the libraries and stan-
dards used.

Measures of correctness/success
Mean reciprocal rank
Reciprocal rank is the inverse of the position of the first correctly
retrieved active in a ranking scheme, or the best-scoring active in
a classification. The correctness/success is determined by match-
ing the retrieved active to a known drug–indication association
according to some standard. MRR is the average of the inverse
rank of each first retrieved active (i.e., the first TP).52 Although
easy to calculate, this metric only uses the ranking of the first
retrieved active. According to MRR, a drug-repurposing experi-
ment that ranks a single active correctly out of several performs
just as well as another that ranks several correctly. An overall
measure of correctness is difficult to discern from the reporting
of a single value; however, a possible way to evaluate distribu-
tions of performance across several experiments is provided by
Eq. (1)52:

MRR ¼ 1
m

Xm
i¼1

1
ranki

ð1Þ

where m is the total number of measurements made and ranki is
the rank of the first active.

MRR is the least similar to the other metrics reviewed. It does
have utility ranking putative drug candidates for an indication
for which there is a single known association (i.e., there is only
one active to compare against for evaluation of correctness/suc-
cess), such as with some neglected and emerging indications.
Our previous metric for evaluating performance in CANDO,
AIA, is similar to MRR, in that, for each drug–indication pair,
we are primarily concerned with whether there is an active
within a certain cutoff.

True positive, true negative, false positive, and false negative
Given a classification or ranking of candidate drugs for repurpos-
ing, the positive samples retrieved are those deemed to be associ-
ated with the desired indication or correctly ranked within the
specified cutoff. Negative samples are those classified as having
no association with the desired indication or ranked outside
the cutoff. Within these, there are TP, FP, TN, and FN samples.
TP samples are correctly classified or ranked associations that
www.drugdiscoverytoday.com 53
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are present in the standard, whereas FPs are incorrectly classified
as positive or ranked within the cutoff, with the corresponding
association not in the standard. FNs are known associations
found in the standard but classified incorrectly or ranked outside
the cutoff, whereas TNs are not present in the standard and cor-
rectly classified as such or ranked outside the cutoff.

Sensitivity and specificity
Sensitivity is the proportion of TPs that are correctly identified;
specificity is the proportion of TNs that are correctly identified
(Eq. (2)):

sensitivity ¼ recall ¼ true positive rate TPRð Þ ¼ TP= TP þ FNð Þ
specificity ¼ selectivity ¼ true negative rate TNRð Þ ¼ TN= TN þ FPð Þ

ð2Þ
Lim et al.53 used sensitivity to report drug–target prediction

correctness using their REMAP platform. They did not directly
quantify their drug-repurposing predictions, but found corrobo-
rating examples of novel treatments in the literature. Donner
et al. used recall as a metric for reporting and visualization of
ranking perturbagens (chemical substances that change gene
expression),54 and Xuan et al. graphically showed the recall at
top cutoffs of rankings of drug–indication associations generated
via their methods.55 Wu and colleagues used sensitivity as one of
their metrics of choice to evaluate the ability of their repurposing
platform (MD-Miner) to identify active drugs among top-ranked
candidates for repurposing.56 The reporting of sensitivity and
Drug Discovery Today

FIGURE 3
Evaluating Computational Analysis of Novel Drug Opportunities (CANDO)
performance using sensitivity. The sensitivity values (vertical axis) of all
drug–indication associations in CANDO v2 (blue) and a random control
(orange) are shown according to the rank (horizontal axis). Broadly, more
drug–indication pairs score better at all ranks using the v2 pipeline relative
to random, visually observed as more blue in the upper left half and purple
in the lower right half above. The darkness of a point is directly proportional
to how many lines pass through that point. This is an illustration of results
using a single metric for a single pipeline within a single platform compared
with the same pipeline with random input data, highlighting the difficulties
in visualizing data of this type and size. More metrics, more pipelines, more
platforms, and more data (including controls) will greatly increase the
complexity of this illustration.
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specificity is not usually the focus in these studies. Instead, they
are described and displayed as part of another metric, often the
receiver operator characteristic curves and area under such curves
discussed below. Fig. 3 illustrates the application of this metric to
CANDO.

False discovery rate and false positive rate
More TPs are classified and ranked correctly when quantifying
and subsequently limiting the number of FPs. In drug repurpos-
ing, the false discovery rate (FDR) is typically used as a cutoff for
further development of specific results and not as a standalone
metric. Through consideration of drugs, inflammatory bowel dis-
ease (IBD) genes, and biological pathways, Grenier and Hu gener-
ated candidate treatments for IBD, using the FDR as a way to
guide classification of putative therapeutics.57 Sirota et al. used
FDR to measure the significance of drug–indication scores com-
pared with random in their experiments comparing gene expres-
sion levels as drug signatures.19 Hingorani et al. claimed that drug
discovery projects fail because of their excessive FDR58; in addi-
tion, they calculated the probability of repurposing success based
on several assumptions. A utility of drug-repurposing technolo-
gies is to reduce the FDR, but current methods can easily inflate
the number of false discoveries by generating excessive numbers
of predictions.59 Lim et al. used a confidence weight to quantify
uncertainties in predictions to reduce FPs.60 In a similar way to
the FDR, the false positive rate (FPR) is generally used as an inte-
gral part of another metric (Eqs. (3) and (4)).

FDR ¼ FP= FP þ TPð Þ ð3Þ

FPR ¼ FP= FP þ TNð Þ ð4Þ
Receiver operating characteristic curve and area under the ROC
curve
ROC curves are graphs in which each point is the representation
of a binary classification performance measured using the TP and
FP rates. The points along an ROC curve are discrete but are often
shown as continuous lines that are obtained by varying the cut-
off for classification or rank value and calculating the corre-
sponding TPR and FPR. One of the more popular methods for
assessing and reporting the performance of drug-repurposing
technologies is the area under the ROC curve (AUC or AUROC).
A singular value, the AUROC is calculated either using the trape-
zoid rule or directly using the rank of the actives (drug–indica-
tion associations present in the standard) along with the ratio
of actives and ratio of inactives (to be determined associations,
or not present in the standard) in the entire drug library.48 We
have implemented the second approach in CANDO (Fig. 4). A
higher value is taken to be indicative of better performance, with
a perfect classification obtaining an AUROC of 1.0, and 0.5 indi-
cating random ranking/classification (Eqs. (5) and (6)):

AUROC ¼ 1� xð Þ
Ri

� Ra

2Ri
ð5Þ

where Ra is the ratio of actives, Ri the ratio of inactives, and

x ¼ 1
nN

Xn
i¼1

ri ð6Þ
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FIGURE 4
Evaluating Computational Analysis of Novel Drug Opportunities (CANDO)
performance using receiver operating curves (ROC) and area under ROC
(AUROC). (a) Mean ROC curve across all drug–indication pairs for CANDO v2
(blue) and a single sample random control (orange). As with all ROC curves,
the horizontal axis is 1–specificity and the vertical axis is sensitivity. The
empirical random matches what is mathematically expected by random (a
straight line along the diagonal) (i.e., both reflecting drug–indication
associations obtained by chance based on a uniform distribution). (b)
Histogram of AUROC scores for all drug–indication pairs predicted by v2
(blue) compared with those from 100 random runs (orange). The mean
AUROC of all drug–indication pairs from v2 is 0.543, compared with a
empirically derived random mean of 0.5 (again, matching theoretical
expectation). The right shift of the v2 AUROC indicates an overall better
performance relative to random controls. Both ROC and AUROC are useful
for internal validation, but overall have limited utility in assessing different
drug-repurposing experiments or technologies, in part because of imbal-
ances in known drug–indication associations and not emphasizing early
recognition.
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where ri is the rank of the ith active, and N is the total number of
drugs

The drug-repurposing project PREDICT uses AUROC as a main
method of reporting goodness.61 Moridi et al. reported their own
AUROC compared with that of PREDICT.62 Nguyen et al. created
a computational drug-repurposing framework based on control
system theory (DeCoST) to make novel treatment predictions
for cancer.63 Notably, Nguyen et al. included negative associa-
tions in their studies, such as drugs withdrawn from treatment
or terminated clinical trials, which enhanced the fidelity of their
computational experiments to reality.63 Given the different
libraries and standards used, drug-repurposing studies are better
analyzed with one or more other metrics in addition to the
AUROC. As stated previously, the AUROC is dependent on the
ratio of actives to inactives in a library; the DeCoST framework
overcame this dependency issue in part by creating a new, more
balanced, library derived from drugs used by another group.64

Emre Guney used AUROC as a metric, pointing out how data
in a drug-repurposing experiment might bias scientists toward
conclusions that are not justified, and how single values of
AUROC might not hold up to further cross-validation.65

Lee et al. compared results of their drug-repurposing experi-
ments across a diverse breadth of indication types using AUROC,
showing better performance than those of others for the same
indication types.66 The mean AUROC of CANDO v2, calculated
on a per indication basis, which itself is a corresponding average
of grouped drug–indication pairs when there is more than one
drug, is 0.520, with a median of 0.525 (interquartile range:
0.481–0.561).

The biggest shortcomings of the ROC/AUROC are the lack of
early recognition and inability to handle imbalanced data. As
illustrated with respect to virtual screening,48 the metric fails to
enable comparison of drug repurposing for ranking actives at
the top of an ordered list, which is the desired goal.
Precision and precision-recall, and area under the precision-
recall curve
Precision measures the relevance of a set of predictions (Eq. (7)):

precision ¼ TP= TP þ FPð Þ ð7Þ
Yu et al. use established disease–gene–drug relationships to

infer new drug–tissue–specific disease relationships, and reported
precision as a standalone metric (as a score relative to the top per-
cent of drug–indication pairs).67 Precision is often reported
alongside recall, and one of the most commonly used metrics
used to evaluate drug-repurposing technologies is area under
the precision-recall (PR) curve (AUPRC). Saito and Rehmsmeier
provide strong evidence for the superiority of precision-recall
compared with ROC when evaluating imbalanced data.68 Imbal-
anced data are commonplace in drug–indication association
standards used by repurposing technologies (i.e., the drugs in
the standard are spread divergently across the indications, and
vice versa).

PR curves show a distinctive jagged edge pattern or appear
finely interpolated, retaining maximum precision up to a partic-
ular recall.51 Xuan et al. used both ROC and PR to compare their
drug–indication association predictions to those made by
others.55 Peng et al. also used ROC and PR curves to demonstrate
the internal validation of their network-based inferences about
drug Anatomic Therapeutic Classification (ATC) codes.69 McCus-
ker et al. used precision to evaluate their computational drug-
repurposing predictions to treat melanoma as ‘the percentage
of returned candidates that have been validated experimentally
or have been in a clinical trial versus all candidates returned’.70

This metric is indeed precision, albeit based on a different type
www.drugdiscoverytoday.com 55
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of standard, because they applied it to evaluate capturing litera-
ture instead of known associations.

Iwata et al. used AUPRC to assess the internal performance of
reconstructing known drug–indication associations made using
supervised network inference, and compared their results to
those obtained by others.71 Khalid and Sezerman reported
AUPRC along with AUC and mean percentile rank to demon-
strate the ability of their platform, which combines protein–pro-
tein interaction, pathway, protein-binding site structural and
disease similarity data, to capture known drug–indication associ-
ations.72 With respect to cross-platform comparability, the
authors applied their algorithm to evaluate performance using
gold standard data available online for three other platforms
and found that they obtained better AUC values using their
methods but with data from other platforms.72 Similarly, using
both AUC and AUPRC, Wang et al. used DeepDRK, ‘a machine
learning framework for deciphering drug response through
kernel-based data integration’ to predict individualized patient
responses to chemotherapy.73

Accuracy and F1-score
The term ‘accuracy’ causes confusion because it is used to refer to
performance generally in a colloquial sense and also to a mathe-
matically defined value in the context of binary classification. In
a drug-repurposing evaluation context, accuracy is the fraction of
TPs and TNs correctly classified (Eq. (8)):

accuracy ¼ TP þ TNð Þ= TP þ FP þ TN þ FNð Þ ð8Þ
Accuracy is influenced by the number of actives and inactives

in a set and, therefore, its utility is limited. Accordingly, it is best
used with balanced data, which are rare in drug-repurposing
technology standards. CANDO v2 obtains an average accuracy
over all drug–indication pairs of 0.94. This high value is appeal-
ing at first but is useless because it is identical to the mean aver-
age accuracy over all pairs for data collected over 100 random
sample runs. This is because our standard is greatly skewed in
(correctly) representing the known drug–indication associations.

The F1-score (F-score or F-measure), widely used in machine-
learning applications, is the harmonic mean of precision and
recall (Eq. (9)):

F1� score ¼ 2
1

precision þ 1
recall

¼ 2� precision� recall=ðprecisionþ recallÞ ð9Þ
By focusing on small-value outliers and mitigating the impact

of large ones, the F1-score provides an intuitive measure of cor-
rectness when using uneven class sizes, unlike accuracy. Just as
precision and recall are calculated at a certain cutoff, the ranks
at which the measurement is made, or the score used for classifi-
cation, should be reported along with the F1-score. Using
CANDO v2, we obtain a mean F1-score calculated over all
drug–indication pairs at the top 100 cutoff of 0.033, compared
with the mean of 100 random samples at the same cutoff of
0.023.

Zhang et al. used AUC, precision, recall, and F1-score in eval-
uating their SLAMS algorithm.74 Their calculation of recall is not
directly related to the other measures,74 an indication of how dif-
ferent groups measure performance variably. Aliper et al.
reported results of their deep learning platform for drug repur-
56 www.drugdiscoverytoday.com
posing based on transcriptomic data using accuracy and F1-
score.75 Specifically, the authors reported not only averages,
but also the performance of their platform across three, five,
and 12 specific therapeutic-use categories according to the MeSH
classification, and provided putative explanations for differences.
McCusker et al. also used the F1-score in evaluating performance
of their probabilistic knowledge graph platform.70

Boltzmann-enhanced discrimination of receiver operating
characteristic
The BEDROC metric merges early recognition with the area
under the ROC.48 More formally, the BEDROC metric evaluates
the probability that an active ranked by the evaluated method
will be found before any other that is derived from a hypothetical
exponential probability distribution function with parameter a,
where aRa �1 and a = 0. In this context, Ra is the ratio of actives
in the standard and 1/a is ‘understood as the fraction of the list
where the weight is important’.48 The authors state that BEDROC
should be understood as assessing ‘virtual screening usefulness’
as opposed to ‘improvement over random’ (which is what the
ROC does). In the context of drug repurposing, this may be inter-
preted as the probability that a drug predicted to treat an indica-
tion is ranked better than a drug that is not (Eq. (10)).

BEDROC ¼ RIE� RIEmin

RIEmax � RIEmin
ð10Þ

RIE is itself another metric known as robust initial enhance-
ment (Eq. (11)). RIEmin is the calculated RIE when all actives are
at the bottom of a ranked list and RIEmax when they are all ranked
better than any inactives; xi is the relative rank of the ith active
(i.e., xi =

ri), where ri is the rank of the active, N is the total num-
ber of drugs/compounds, n is the number of actives, and 1 is ‘the
fraction of the list where the weight is important

RIE ¼
1
n

Pn
i¼1

e�axi

1
N

1�e�a

e aN�1

� � ð11Þ

Several computational studies to repurpose drugs have used
BEDROC as a metric, albeit not to evaluate drug-repurposing per-
formance. Specifically, Govindaraj et al. used BEDROC to assess
the ability of their algorithm to detect protein pockets binding
similar ligands.76 Alberca et al. used BEDROC to assess virtual
screening of protein–ligand interactions.77 Jain reported on lim-
itations of BEDROC and other metrics that assess early enrich-
ment from a virtual-screening perspective, stating that they are
biased to report elevated values based on the total number of pos-
itives and negatives.78 An example of explicit use of BEDROC in
drug repurposing is from Arany et al.,79 who used it (along with
AUROC) to evaluate the effectiveness of their methods to pro-
duce drug rankings with respect to correct Anatomical Therapeu-
tic Chemical (ATC) codes.79

Comparing BEDROC scores across different a values is not
advised.48 For a given drug-repurposing technology, users might
seek to predict novel drugs across a multitude of indications with
highly variable numbers of associated drugs. If an indication has
200 associated drugs, then a should be low to maintain the �1
condition. However, such an a may inappropriately lead to
highly variable BEDROC scores for indications with a low num-
ber of drugs, because small changes in absolute ranking of these
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FIGURE 5
Evaluating Computational Analysis of Novel Drug Opportunities (CANDO)
performance using Boltzmann-enhanced discrimination receiver operating
curve (BEDROC). (a) Count of CANDO v2 BEDROC scores using a = 20 for all
compound–indication pairs in CANDO, compared with 100 samples
obtained using shuffled CANDO data (orange). Using a = 20, the most
commonly used value in the literature, the mean v2 BEDROC score is 0.104,
compared with an average of 0.06 over 100 random samples, indicating
that v2 outperforms this random control at retrieving known drug–
indication associations on average. Generally, BEDROC scores for predicted
drug–indication associations from v2 are considerably better than random,
indicating their greater real-world utility. (b) Mean v2 BEDROC scores (blue)
compared with a single random sample (orange) using a = 5, 10, . . ., 100.
The random sample was constructed via shuffling of v2 data to obtain
drug–drug similarities expected by chance, as usual. At higher values of a,
certain drug–indication pairs might violate the conditions necessary for
BEDROC to remain useful.
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drugs correspond to a large change in the relative ranking. These
requirements of a possibly lower cross-platform comparability;
regardless, BEDROC is best applied to evaluate repurposing tech-
nologies using similar quality and size data (i.e., similar numbers
and quality of drugs, indications, and corresponding
associations).

Fig. 5 illustrates the results of integrating BEDROC into
CANDO. Most uses of BEDROC are based on single a value across
all known drug–indication associations for all calculations to
maintain comparability. As platforms become larger and more
diverse, finding a balance to handle indications with varying
number of associated drugs will be necessary, without being sin-
gularly biased to a few well-studied indications. Regardless, BED-
ROC has several major improvements over AUROC, and the
former should be preferred when reporting results of drug-
repurposing technologies.
Discounted cumulative gain and normalized discounted
cumulative gain
The discounted cumulative gain (DCG; Eq. (12)) is constructed
with assumptions that top-ranked results are more likely to be
of interest, and that particularly relevant results are more use-
ful.80 Although data in the form of ranking are readily measured
by the DCG, classification schema should be converted to a rank-
ing underpinning the decision boundary to be appropriately
measured by DCG. The Ideal DCG (IDCG; Eq. (13)) is the DCG
calculated for a ranking in which all known actives are ranked
the very best in the prediction list. The Normalized DCG (NDCG;
Eq. (14)), with a value between 0 and 1, is obtained by dividing
the DCG by the IDCG. The NDCG enables comparison and con-
trasting of performance evaluation with different numbers of rel-
evant results with meaningful interpretation (i.e., we can use a
single value to determine goodness of a drug-indication rank-
ing/classification with greater confidence than most other met-
rics even when there are different numbers of associations).

DCG ¼
Xp

i¼1

2reli�1

log2 iþ 1ð Þ ð12Þ

IDCG ¼
XRELpj j

i¼1

2reli�1

log2 iþ 1ð Þ ð13Þ

NDCG ¼ DCG=IDCG ð14Þ
where i is the rank of the active in question, up to rank p, and reli
signifies the relevance of the predicted drug to the indication {0 or
1 in the binary case}, REL_p is the list of associated drugs in the set
up to position p, and |REL_p| is the size of that list.

The value of p is a specific position (ranking) at which the
NDCG is calculated. Therefore, results are reported as NDCGp.
Wang et al. suggest selecting p as a function of the size of the
libraries used.81 The distribution and measures of central ten-
dency of NDCG at a cutoff or multiple cutoffs can be reported
(i.e., a NDCG value can be calculated for every possible ranking).
One of the most appealing features of DCG is the ability to assign
relative importance, captured in the reli value. For a certain indi-
cation, there might exist more or less effective therapies, which is
reflected in the drug–indication association standard. Applied to
precision medicine, such a relevance could be determined on a
per patient basis. This is a complex variable with a range of pos-
sible values but is often used in a binary fashion. The NDCG is
the best measure of correctness if a standard has known relative
importance assignments.

Ye et al. used NDCG as the metric of choice for analyzing
repurposing opportunities based on drug adverse effects.82

Specifically, the authors reported the top-10 ATC therapeutic cat-
egories with NDCG5.

82 Specifically, the authors report the thera-
peutic categories of drugs (as classified by ATC codes) that
www.drugdiscoverytoday.com 57
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FIGURE 6
Evaluating Computational Analysis of Novel Drug Opportunities (CANDO)
performance using normalized discounted cumulative gain (NDCG). The
NDCG scores of CANDO v2 compared with those from a single random
control at all ranks/cutoffs is shown in (a) and at the top 20% of ranks (432)
in (b). The overall mean of v2 is the dark-blue line, with per indication
means in light blue. The mean of a single random sample is in red, and the
per indication means of the same sample is in orange. By chance, some
predictions will be worse than random, as is evident whenever an orange
line is higher than a light-blue line but, on average, v2 performs better than
random at all ranks. These comparisons indicate the utility of CANDO at
predicting drug–indication associations using the most rigorous perfor-
mance evaluation metric considered in this study.
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achieved an NDCG5 of more than 0.7 during benchmarking.
Although the metric enables comparability, predicting a general
categorization of a drug–indication association is easier than a
very specific therapeutic prediction. In addition to using NDCG,
Ye et al. reported putative therapeutic predictions that overlap
with previous similar work.83 Saberian et al. used NDCG to assess
the performance of their drug-repurposing method for three
indications [breast cancer, idiopathic pulmonary fibrosis (IPF),
and rheumatoid arthritis (RA)], with the score based on the rank
of the left-out drug in each round of sampling.84 Their work
included a sample calculation of NDCG in the corresponding
58 www.drugdiscoverytoday.com
supplementary material, compared with results based on 1000
random rankings of drugs, although the mean NDCG of these
rankings was not reported.84

Fig. 6 illustrates the mean NDCG at all cutoffs for CANDO v2.
We obtained a mean NDCG10 of 0.060, compared with an aver-
age of 100 random data sets of 0.0197, and a theoretical average
of 0.0199. Comparing these values along with the results shown
in Fig. 6 indicates that using CANDO to predict drug–indication
associations has utility. The elevated cross-platform comparabil-
ity of NDCG because of the use of logarithmic scoring and nor-
malization makes it among the most-useful metrics reviewed to
measure success when used in drug-repurposing technologies
(Fig. 7).
Custom methods of performance evaluation
We have used our AIA metric in CANDO extensively8–18 (see the
section ‘Drug/compound characterization, benchmarking, evalu-
ation metrics, and performance’). Similarly, Peyvandipour et al.
used a custom evaluation metric in their systematic drug repur-
posing study.85 The goal of this review is to more readily compare
our results with others, an outcome toward which we are contin-
uously striving, presently by integrating more widely used met-
rics into our system, and advocating for others to do the same.
We initially developed AIA in response to our validation partners
seeking a singular successful hit for an indication they were
studying; similarly, other researchers might want to use their
own evaluation methods for their own reasons. Nonetheless,
we recommend researchers also report results using one or more
of the metrics described herein.
Evaluating drug repurposing in the context of
precision medicine
A specific medication might be more or less efficacious for a par-
ticular patient with a specific disease at a given time. Drug-
repurposing technologies can be tailored to arbitrary individual
contexts and, thus, precision/personalized medicine is a growing
area of interest.33,60,73,86–89 Our group is currently exploring
opportunities in the realm of precision cancer therapeutics using
both CANDO and our molecular-docking protocol CANDOCK.17

We have previously published studies to predict HIV drug regi-
mens based on the viral mutations circulating within a
patient,90–92 understanding polymorphisms in the malarial para-
site Plasmodium falciparum,93,94 explaining warfarin resistance,95

among many others. All these studies would have benefited from
the application of the evaluation metrics described in this study.

In rare diseases, including rare genetic diseases and rare can-
cers,33,96–98 computational drug-repurposing experiments might
offer the best chance for discovering efficacious treatments.4

The field has promising initial results,86,87,99 but notions of cor-
rectness remain limited to mechanistic understanding and pre-
clinical corroboration.33 The use of particular metrics and
quantifiable comparison between experiments is unknown,
because it has not been done, but the metrics reviewed herein
might have the same utility as when used broadly. Given the
low number of individuals with rare diseases, clinical trials are
difficult to conduct, and only the most scientifically rigorous pre-
clinical predictions with greatest confidence from drug-
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FIGURE 7
A subjective illustration of the relationship between cost and utility of
performance evaluation metrics for drug repurposing. Further right on the
horizontal cost axis equates to technologies requiring increasing compu-
tational power with decreasing intuition. The vertical utility axis is a gauge
of enabling cross-platform comparability and, ideally, fidelity to reality
through likelihood of success in prospective external validations for
multiple drugs per indication. Metrics discussed in the supplemental
information online are in gray. We encourage scientists to use metrics such
as NDCG and BEDROC, given their high utility and low incremental cost, in
addition to avoiding overtraining using a single metric. This study makes
the argument for the same general trend to be borne out through
prospective clinical validation experiments of drug-repurposing technolo-
gies.
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repurposing technologies should be considered for further down-
stream research and use.96
Cross-platform comparability and fidelity to reality
Different standards, imbalanced data, and suboptimal design
CANDO was designed to be a shotgun repurposing technology
(i.e., to generate putative drug candidates for any/every indica-
tion). Lack of consensus with respect to performance evaluation
makes it difficult to assess whether this is true of any drug-
repurposing technology. A key component of drug-repurposing
technologies is the use of some standard drug–indication associ-
ation library to which results are compared. A ‘perfect’ evaluation
metric cannot correct for data that do not reflect reality, are
imbalanced, are over-represented by ‘me too’ drugs/compounds,
or generated as a result of poor cross-validation or overtraining.

There are a limited number of high-quality data sources avail-
able for curating drug-repurposing standards, and those that do
exist fluctuate significantly. As an example, consider the drug
ofloxacin, which is commonly classified as a fluoroquinolone
antibiotic. Different standards associate it with between one
and 70 indications,40,46,100–102 which subsequently influences
the odds of making a correct prediction by chance. Ultimately,
different standards make it difficult to compare technologies
and platforms because there are overlaps in semantics in drug–
indication associations and language to describe biomedical enti-
ties.103 Moving forward, differences in drug–indication associa-
tion standards could be overcome through increasing
consistency of drug classes across standards,104 or through inte-
gration of ontological understanding into all aspects of drug
repurposing,103 using ontologies specifically designed for this
purpose.105 Knowing the ground truth is a prerequisite for mea-
suring performance,106 and the use of scientifically rigorous
ontologies will ensure robust modeling of reality.

It is natural that there are different numbers of drugs associ-
ated with each indication within a particular single standard
used in a large platform, such as CANDO, because of biological,
economic, and even political reasons. The result is a large dis-
crepancy in the number of drugs approved for, or associated
with, a particular indication. For example, in the CANDO v2
drug–indication association standard, there are 218, 216, and
207 drugs associated with pain (MeSH ID: D010146), hyperten-
sion (MeSH ID: D006973), and seizures (MeSH ID: D012640),
respectively, versus eight for dermatomyositis (MeSH ID:
D003882). Although the performance of a drug-repurposing
technology platform, such as CANDO, averaged over many indi-
cations might be reported as robust, performance on one or a few
specific indications is more variable within and between
platforms.

Baker et al. identified hyperprolific drugs that have been stud-
ied in the context of many indications, and indications for
which many drugs have been investigated as a treatment.107 In
an attempt to partly overcome variation in results and perfor-
mance due to chance, Zhang et al. eliminated indications with
less than ten associated drugs and drugs with less than ten asso-
ciated indications from their platform.108 Unfortunately, this
action appears to contradict their attempt to meaningfully com-
pare to the PREDICT project using the AUROC, because the dis-
tribution of drug–indication associations in PREDICT was
enriched in an opposite manner for drugs with less than ten indi-
cation associations, and indications with less than ten drug
associations.61

In describing the evolution of CANDO, we use measures of
performance evaluation applied globally, as we have done here.
We also apply these measures to specific individual indications,
particularly with respect to the prospective validation of the plat-
form or its components.8,9,11,18,92,109–111 Regarding any classifier
technologies, David Hang states, “[A] potential user is not really
interested in some ‘average performance’ over distinct types of
data, but really wants to know what will be good for his or her
problem, and different people have different problems, with data
arising from different domains. A given method may be very
poor on most kinds of data, but very good for certain prob-
lems”.112 In particular, it is easy to use different input data or
comparison standards to obtain numerically better results. Given
that a great average performance overall does not guarantee sim-
ilar performance for specific drugs/indications, and vice versa,
drug-repurposing technologies must undergo a thorough vetting
across multiple libraries, standards, and experiments (indications
to which the technology is applied) to be considered robust.

Inherent limitation of claims and metrics
Metrics for evaluating success of drug repurposing typically rely
on the assumption that all associations not part of a standard
are negatives. This goes against the entire premise of drug repur-
posing, which is to expand the list of known drug–indication
associations, and any prediction made that is not present in a
standard could subsequently be proved correct.

A perfect score for a drug-repurposing experiment based on
some evaluation metric does not necessarily mean that perfect
www.drugdiscoverytoday.com 59
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drug-repurposing success was achieved. Numerical evaluation is
limited by the choice of cutoff. If the results are an ideal ranking
or classification of drugs that are known to be a treatment for an
indication against those that are not, then all of the metrics dis-
cussed here will yield their best possible result. However, the
actionable information is in those drug–indication associations
that are truly novel and even unexpected. For example, in a
drug-repurposing experiment for breast cancer, the top 10 puta-
tive therapeutics reported were known drugs to treat this indica-
tion, and the first novel prediction was at rank 11.113 If any of the
metrics described here was used for evaluation with a rank/cutoff
of top 10, then this experiment would achieve a perfect score
without discovering a novel drug to repurpose.

Purported benefits of high-throughput approaches are the
vast size and quick speed, enabling us to explore and make dis-
coveries more quickly than ever before. Thus, specific elements
of data/standards used in drug-repurposing experiments and
qualitative results (predictions) might sometimes be clinically
wrong or nonsensical. This includes incorrect notions of indica-
tions114 and proposition of treatments known to exacerbate dis-
ease.62,115 A few mistakes or inconsistencies in a large drug-
repurposing technology do not necessarily invalidate it, but
necessitate the need for manual expert inspection and curation.

As artificial intelligence (AI) and machine-learning
approaches, including graph-based methods, become more
prevalent in drug repurposing,73,75 the need for rigorous bench-
marking has similarly grown. Ascertaining and maintaining the
usefulness of these approaches is crucial from both a basic
science and clinical perspective. As with other methodologies,
biased data as input and overtraining may return results that
are falsely interpreted as being significant/high-confidence pre-
dictions. Mindset, culture, and willingness to apply computa-
tional drug-repurposing models and use their results,
considered relevant for the success of AI in drug discovery and
development,116 will partly depend on the confidence in the
methods and output, as evidenced by how we evaluate perfor-
mance. Orthogonal metrics that capture different aspects of the
goodness of an experiment could be used in concert to overcome
bias and potential voodoo science pitfalls. In the future, prospec-
tive blinded assessment of computational drug repurposing, such
as those used in protein structure prediction and molecular dock-
ing,117,118 might be another solution to alleviate the problem of
bias.

Complex yet quick drug-repurposing technologies can render
results beyond the cognitive ability of a person to be familiar
with all of its components and the amount of resulting data.
The use of rigorous performance evaluation metrics enables a cul-
ture in which scientific rigor and correctness are valued more
than the novelty in making claims of putative repurposed thera-
peutics. Even so, it would be prudent for basic science researchers
to work with clinicians to ensure that their results make sense to
guide correct predictions into clinical use and improve human
health.

Validation
In the context of drug-repurposing technologies, ‘validation’
refers to: internal validation through testing of models on
unknown or hidden data; performance as evaluated by the types
60 www.drugdiscoverytoday.com
of metrics discussed here; or to some external independent cor-
roboration. The latter refers to anything from selective reporting
of similar results in the literature to results from prospective pre-
clinical and/or clinical studies.

A popular strategy for drug repurposing is to report corrobora-
tion of predictions made using computational methods with pre-
viously reported independent research in the literature, in a case-
based or large-scale analysis.19,53,119–121 We have used this strat-
egy,11,12,18 including highlighting literature that contradicts our
findings.15 It is relatively easy with this approach to find exam-
ples that support preformed conclusions, and report only those,
representing potentially serious instances of confirmation bias.
Selective literature corroboration is neither systematic nor
hypothesis driven.

Similar to literature analysis is the use of data on clinical trials
completed or in progress.67,74,84,122,123 Through analysis of elec-
tronic health records, preventative associations between drugs
and indications (i.e., a form of drug repurposing) have been dis-
covered in an ad hoc manner.124,125 Cheng et al. reported causal
increased or decreased risk of coronary artery disease of several
drugs based on a networked-based approach to drug repurposing,
followed by testing of their predictions using ‘large healthcare
databases with over 220 million patients’ and ‘pharmacoepi-
demiologic analyses’.126

There are several examples of preclinical (in vitro and in vivo)
validation done following a computational drug-repurposing
experiment.19,21,60,126 In the future, some of these technologies
might approach or even rival the current best method for eluci-
dating the usefulness of a drug, which for now remains double-
blinded, placebo-controlled, randomized trials with clinically rel-
evant primary endpoints (prolonged life or improved quality of
life), and representative samples of subjects, to evaluate both effi-
cacy and safety.127

The goal of achieving successful drug repurposing, from tech-
nology to clinic (Fig. 1), is still mostly aspirational at this stage.
However, progress is being made. The most successful discoveries
made using drug-repurposing technologies are ad hoc singular
events, which current metrics are not well suited to evalu-
ate.128,129 Although emotionally unsatisfying, we can search for
and use metrics that enable us to compare our technologies
directly to each other, for the sake of rigorous science, intellec-
tual merit, and broader impact.
Response to pandemics and novel disease
The potential for drug-repurposing technologies to help respond
to epidemics and pandemics rapidly, side stepping lengthy,
costly preclinical and clinical studies, is enormous. Recent exam-
ples include the Ebola virus disease West African outbreak of
2014, the emergence of the Zika virus, and the COVID-19 global
pandemic caused by the novel severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). In all instances, there were no drugs
approved to treat these indications, but drug-repurposing tech-
nologies were used to generate putative therapeutics
quickly.11,18,130–135 It is challenging to use the metrics we have
described to evaluate the predictions because there are no previ-
ously approved treatments. However, if a platform or methodol-
ogy has reported measurements of success, especially in related
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indications to prevent, treat, or cure infectious diseases, then
relying on those performance values as a quantified surrogate
could have utility.

To briefly expand on our own work in this area, we applied
the CANDO platform at the onset of the COVID-19 pandemic
to identify potential small-molecule treatments that inhibit
SARS- CoV-2.18 We first optimized our interaction scoring proto-
col (BANDOCK) for all compounds against the SARS-CoV pro-
teome via the NDCG metric based on their ability to highly
rank a subset of compounds known to be active against various
coronaviruses previously identified in two high-throughput
screens by Dyall et al.136 and Shen et al.137 We then applied the
optimized parameter set to the SARS-CoV-2 proteome. We pub-
lished the top-scoring candidates alongside two other prediction
lists generated using our proteomic interaction similarity
approach with the v2 human proteome. Currently, 53 out of
the 276 approved drug candidates in the three lists have been
validated in vitro, in vivo, or in a clinical setting in the literature,
including dozens of untested compounds with unknown activ-
ity, providing strong evidence that a multitarget approach to dis-
covering repurposed therapeutics is efficient and invaluable,
especially when urgent challenges, such as the COVID-19 pan-
demic, emerge. Continuously updated results are available at
http://protinfo.org/cando/results/covid19/ and a full analysis is
forthcoming.

The COVID-19 pandemic also illustrates a potential downside
of quickly available drug-repurposing predictions. Drugs that
have been predicted to be efficacious in treating a known indica-
tion might have serious and/or unknown adverse effect profiles
when used to treat novel indications. This could be addressed
via drug-repurposing technologies by using adverse drug reac-
tions in lieu of indications and similarly benchmarking perfor-
mance as described here. Studies of rigorous evaluation of drug-
repurposing platforms expressed in clear and precise language
will help scientists, healthcare workers, institutional and govern-
ment officials, and the public make informed judgements with
respect to future steps on how to use the generated drug candi-
dates for a given indication.
Concluding remarks
Drug repurposing will help advance and evolve therapeutic dis-
covery in the 21st century, bringing new medicines to patients
in need. Advancing the field depends on whether we are able
to rigorously evaluate the validity and meaning of our computa-
tional repurposing experiments with confidence, a crucial com-
ponent of platform development. We have shown how
integration of disparate metrics into the CANDO platform sup-
ports this claim. The metrics currently used for gauging correct-
ness of drug-repurposing technologies vary in terms of
enabling cross-platform comparability, as well as eventual clini-
cal use of predicted therapeutics. The development and use of
improved evaluation metrics will enhance cross-technology
comparability and enable more accurate modeling of reality to
deliver on the potential of drug repurposing.
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