
cando.py: Open Source Software for Predictive Bioanalytics of Large
Scale Drug−Protein−Disease Data

William Mangione, Zackary Falls, Gaurav Chopra, and Ram Samudrala*

Cite This: J. Chem. Inf. Model. 2020, 60, 4131−4136 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Traditional drug discovery methods focus on
optimizing the efficacy of a drug against a single biological target
of interest for a specific disease. However, evidence supports the
multitarget theory, i.e., drugs work by exerting their therapeutic
effects via interaction with multiple biological targets, which have
multiple phenotypic effects. Analytics of drug−protein interactions
on a large proteomic scale provides insight into disease systems
while also allowing for prediction of putative therapeutics against
specific indications. We present a Python package for analysis of
drug−proteome and drug−disease relationships implementing the
Computational Analysis of Novel Drug Opportunities (CANDO)
platform. The CANDO package allows for rapid drug similarity
assessment, most notably via an in-house interaction scoring
protocol where billions of drug−protein interactions are rapidly scored and the similarity of drug-proteome interaction signatures is
calculated. The package also implements a variety of benchmarking protocols for shotgun drug discovery and repurposing, i.e., to
determine how every known drug is related to every other in the context of the indications/diseases for which they are approved.
Drug predictions are generated through consensus scoring of the most similar compounds to drugs known to treat a particular
indication. Support for comparing and ranking novel chemical entities, as well as machine learning modules for both benchmarking
and putative drug candidate prediction is also available. The CANDO Python package is available on GitHub at https://github.com/
ram-compbio/CANDO, through the Conda Python package installer, and at http://compbio.org/software/.

■ INTRODUCTION

Drugs and small molecule compounds exert therapeutic effects
via the perturbation of multiple macromolecules, especially
proteins. Growing evidence suggests small molecule drugs
interact with multiple proteins to enact cellular changes,
contrary to the “magic bullet” philosophy often practiced in
drug discovery.8−10 Therefore, interpreting the totality of
protein interactions for drugs provides greater insight into
their therapeutic functions, with the potential for more efficient
drug discovery. In addition, drug repurposing has emerged as a
valuable alternative to traditional drug discovery pipelines,
potentially easing the burden associated with common clinical
trial failures.11−14 Multiple groups have taken a multitarget
approach for predicting drug effects; both Liu and Altman and
Zhou et al. computed interactions between large libraries of
drugs and proteins to map targets to side effect outcomes.15,16

Similarly, Simon et al. mapped drug−protein interactions to
“effect profiles”, of which a given effect is a drug class (for
example, calcium channel blocker or stimulant) as opposed to a
disease or side effect.17 Numerous groups have used network or
systems biology approaches for large scale prediction of drug−
disease associations, typically using known drug−protein
interactions;18−20 however, no studies have computed proteo-

mic interactions for all drugs for the purpose of benchmarking
and prediction for every disease to our knowledge.
We have developed the Computational Analysis of Novel

Drug Opportunities (CANDO) platform for analysis of drug
interactions on a proteomic scale, adhering to multitarget drug
theory,1−7 for the purposes of shotgun drug discovery and
repurposing, i.e., to evaluate every drug for every disease. An
overview of the platform is provided in Supporting Figure 1.
CANDO version 2 (v2) is comprised of a library of 14 606
sequence nonredundant (p-value 10e−7) protein structures
extracted from the Protein Data Bank, 2162 human-approved
drugs from DrugBank, and 2178 indications/diseases from the
Comparative Toxicogenomics Database (CTD), encompassing
18 709 drug−indication associations.21−23 An additional set of
5317 human only protein structures is also available. The
platform relates small molecules based on their computed
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interactions with all protein structures, known as an interaction
signature, then assesses a drug repurposing accuracy based on
how similar drug−proteomic signatures are for those drugs
approved to treat the same indications. The hypothesis is that
drugs with similar interaction signatures will have similar
behavior in biological systems and will therefore be useful
against the same indications.
Here, we present cando.py, a Python package implementing

the CANDO platform for convenient analyses of drug−protein
interaction signatures with the ultimate goal of making novel
putative drug candidate generation easy and accessible. The
package may be used for validation of virtual screening methods
for applications in drug discovery and repurposing and for
extending or developing novel drug discovery and repurposing
platforms. The package reads in a matrix of precomputed
interaction scores with any number of proteins, along with a
drug to indication mapping, which are then benchmarked.
Compound−protein interaction signatures for novel com-

pounds/drugs not present in our library are quickly computed
and added to the matrix using our default interaction scoring
protocol, allowing for direct comparison and ranking relative to
other drug signatures in the platform. The package can also read
in any drug−drug similarity/distance matrix computed using
any third party package, which may be benchmarked or used for
drug−disease association prediction.

■ METHODS: CANDO PLATFORM
IMPLEMENTATION

The CANDO platform is implemented in Python as a series of
parallel pipelines with modules for the followingmajor protocols
(Supporting Figure 1).

Interaction Scoring Protocol. The pipelines in the
CANDO platform are agnostic to the interaction scoring
protocol used: The compound−protein interaction scores in
CANDO may be derived from high throughput disassociation
constant studies, molecular docking simulations, and/or other

Figure 1. Example of benchmarking and putative therapeutic prediction with the canbenchmark and canpredict modules for malaria (Plasmodium
falciparum). A subset of the 22 drugs associated with the indication Malaria Falciparum (MeSH:D016778) are labeled A though G, which from left to
right are dapsone, chlorprothixene, amodiaquine, halofantrine, pyrimethamine, chloroquine, and sulfisoxazole. The remaining 15 drugs are excluded
for illustrative purposes only. The benchmarking accuracies for the top10 and top25 cutoffs, and the top25 consensus scores (CSs) shown in the figure
are based on using only the 7 drug subset (top) and for all 22 drugs (bottom, in parentheses). All drugs and table cells in green are used for calculating
benchmarking performance, while the yellow, blue, and orange cells are the predictions highlighted by the canpredict module. The columns represent
the ranked order of the most similar drugs/compounds based on root-mean-square-deviations of their proteomic signatures to their respective A
through G labeled drug above. The drug−proteome interaction matrix used for this example was created from the interaction scores of 5317 human
protein structures from the Protein Data Bank with a library of 2162 approved drugs fromDrugBank. The benchmarking method tallies the percent of
times another drug associated with the indication is captured within a certain column cutoff rank to a held-out compound (A−G) also associated with
the indication. In the example, both drugs A and F, dapsone and chloroquine, recapture another drug associated with the indication within the top10
cutoff, which are sulfisoxazole (G) and amodiaquine (C), respectively. This results in a top10 accuracy of 28.6% (two out of seven). Both amodiaquine
(C) and sulfisoxazole (G) recapture another associated drug at the top25 cutoff, which are halofantrine (D) and dapsone (A), respectively. This raises
the top25 accuracy to 57.1% (four out of seven). This process is iterated over all indications to calculate global accuracies at each cutoff. The canpredict
module utilizes a consensus voting scheme to suggest putative drug repurposing candidates based on the similarity of their proteomic interaction
signatures to each known treatment for a disease. A tally is kept of how many times a specific drug is captured within a set cutoff to each known
treatment (top25 in this example). Pantoprazole (orange), which has shown antimalarial activity in the literature, falls at rank 14 and 4 for amodiaquine
(C) and pyrimethamine (E), respectively, receiving a CS of 2. The aromatase inhibitor aminoglutethimide (yellow) has a CS of 3, which we are
suggesting as a novel candidate treatment for malaria. Lumefantrine (blue), a knownmalaria treatment which in this case was not originally included in
the Comparative Toxicogenomics Database drug−indication mapping used by the platform, receives a CS of 4. If lumefantrine was originally included
as a treatment, the benchmarking scores would increase to 57.1% and 85.7% at the top10 and top25 cutoffs, respectively, which highlights the
importance of drug−indication mapping veracity. The benchmarking module provides insight into how well the given drug−protein interaction
scoring method is relating drugs in the context of disease, while the canpredict module suggests putative drug repurposing candidates based on drug−
drug similarities.
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quantification of structure−activity relationships.24−26 If more
than one protocol is used, then it constitutes a different pipeline
within the platform. The reference/default compound-protein
interaction scores in the CANDO v2 matrices are computed
using a bioinformatic docking protocol that compares the
structures of query drugs to all ligands known to bind to a given
site on a protein.5 Specifically, the COACH algorithm is used to
elucidate potential binding sites on each query protein, which
uses a consensus approach via three different complementary
algorithms that consider substructure or sequence similarity to
known binding sites in the PDB.27 COACH output includes a
set of cocrystallized ligands for each potential binding site, which
are then compared to a compound/drug of interest using
chemical fingerprinting methods that binarize the presence or
absence of particular molecular substructures. The maximum
Tanimoto coefficient between the binary vectors of the query
compound and the set of all predicted binding site ligands for a
protein serve as a proxy for the binding strength. The final
output is a series of interaction scores between every drug/
compound and every protein structure in the corresponding
libraries.
Benchmarking Protocols. Each drug/compound is ranked

relative to all others based on the pairwise similarity of their
proteomic signatures, calculated using the root-mean-square
deviation (RMSD) by default, resulting in a ranked list of most
similar compounds. By default, all proteins in the library are used
for the RMSD calculation but their composition may be varied
to allow for more specific queries, both generally or on a per

indication basis, which also applies to the canpredict module
(discussed below). Other distance metrics, such as cosine
distance, may also be used.
The benchmarking protocol (implemented in the canbench-

mark module) utilizes a hold-one-out scheme to compute an
accuracy for each indication. For a given indication, each
approved drug is held-out and the most similar compounds
(within various cutoffs) are checked to see if they are also
approved for the indication (Figure 2). This protocol is run
iteratively and averaged across all indications with two or more
drugs approved to provide a drug repurposing accuracy at each
cutoff. Both the average indication accuracy (described above)
and the pairwise accuracy (the weighted average based on the
number of compounds approved for the disease) are outputted,
as well as the coverage, which is the number of indications with
nonzero accuracy. Benchmarking performance across different
versions/pipelines is available in Supporting Figure 2.

Putative Drug Candidate Generation (Prediction)
Protocol. The ranked lists of most similar compounds to
each drug, other than those that are used for benchmarking, are
investigated as potential novel treatments. A consensus scoring
approach is utilized where for each drug associated with a
specific indication, the number of times a particular drug shows
up within a certain cutoff of each list is counted. The prediction
module canpredict then ranks the top compounds by their
consensus scores. Figure 1 provides an example with malaria (
Plasmodium falciparum). The top consensus scoring drugs
include lumefantrine, a known antimalarial drug, and

Figure 2. Example of indication prediction using the canpredict module with drugs (ribavirin and LMK-235). The canpredict module also accepts a
drug/compound as input and suggests indications for which it may be useful based on the ranked list of the most similar drugs and the diseases for
which they are approved. (A) Results for ribavirin, a known antiviral compound, using a set of 5317 human protein structures from the Protein Data
Bank to construct the drug−proteome interaction signatures. First, the top10 most similar drugs to ribavirin are computed via the root-mean-square-
deviation of their proteomic interaction signatures. Then, the consensus scores of the indications associated with the top10 drugs are calculated. In the
example, both Breast Neoplasms (MeSH:D001943) and Leukemia, Myeloid, Acute (MeSH:D015470) receive a consensus score of 2; these two
diseases are highlighted as ribavirin is currently in clinical trials for both and has already shown clinical efficacy against acute myeloid leukemia. The
three drugs contributing to the consensus scores, decitabine, azacitidine, and gemcitabine, are all chemotherapeutic nucleoside analogs. (B) Results for
LMK-235, an experimental histone deacetylase inhibitor currently not approved for human use. In this case, the top20 drugs were probed for a disease
consensus (only ranks 11−20 are shown for illustrative purposes). Two indications of note, namely Pain (MeSH:D010146) and Hypertension
(MeSH:D006973), both receive a consensus score of 2; there exist multiple studies in the literature supporting both the analgesic and hypotensive
properties of LMK-235. The drugs contributing to the consensus scoring include remifentanil, molsidomine, and lidocaine, as pictured. The CANDO
canpredict module is swiftly able to assess the behavioral similarity between the known antiviral ribavirin and several antineoplastic agents, as well as
between the experimental compound LMK-235 and analgesic/hypotensive drugs.
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pantoprazole, a proton pump inhibitor that has shown
antimalarial activity.28 Another strong candidate is amino-
glutethimide, an aromatase inhibitor with uses including
Cushing’s syndrome and various cancers. The exact set of
proteins used for the drug−drug similarity calculations can be
modified, e.g. specifying only Plasmodium proteins.
Putative Indication Prediction Protocol. The canpredict

module can also accept a small molecule compound as input,
including novel chemical entities, and suggest novel indications
for which they may be useful. First the proteomic signature is
computed for all proteins in the platform, then the signature is
compared to all other drugs in the platform. The most similar
drugs to the query compound within a specified cutoff are
probed for a consensus among the diseases for which they are
indicated, correlative to the disease-focused canpredict module
discussed above. Figure 2 presents the results for both an
approved drug, ribavirin, and an investigational compound,
LMK-235. Ribavirin receives a consensus score of two at the
top10 cutoff for both Breast Neoplasms (MeSH:D001943) and
Leukemia, Myeloid, Acute (MeSH:D015470), which is
supported by clinical trials for both diseases in which ribavirin
is the primary intervention.29,30 The three drugs contributing to
these consensus scores are gemcitabine, azacitidine, and
decitabine, which are all nucleoside analog anticancer therapies.
LMK-235 is an investigational histone deacetylase inhibitor that
is yet to begin human trials. The canpredict module output with
a top20 cutoff includes both Pain (MeSH:D010146) and
Hypertension (MeSH:D006973), which are both supported by
in vivo experiments.31,32

AI/Machine Learning Protocols. The CANDO package
also provides support for several machine learning protocols that
learn more complex relationships hidden in the drug-proteome
interaction signatures to improve performance. The currently
supported protocols include support vector machines (SVMs),
1-class SVMs, random forests, and logistic regression, though
the latter two are prioritized as they offer insight into feature
importance. The modules are trained on the input data to
generate models that yield prediction pipelines that are
benchmarked using a protocol similar to the one used by
canbenchmark: for a given indication, each approved drug is
held out while the model is trained on all other drugs approved
for the indication in an iterative fashion. In other words, the
number of binary classifiers trained corresponds to the number
of drugs associated with a particular indication. An equal number
of neutral samples are chosen as negative samples during
training (except 1-class SVMs), which represent drugs/
compounds not associated with the indication. Several metrics
are calculated based on the number of times the samples are
correctly classified, including the area under the receiver
operating characteristic (AUC-ROC) and precision recall
(AUPR) curves (Supporting Figure 3). AUC-ROC and AUPR
are only available with logistic regression and random forests as
they offer classification probabilities. The user may also make
predictions for novel or nonassociated compounds after training
the classifier on all approved drugs for a particular indication,
and both AI/machine learning benchmarking and prediction
protocols are amenable to any kind of feature input (e.g.,
molecular substructures instead of compound-protein inter-
action scores).
Development and Implementation. The CANDO

software is available in Python 2.7, 3.6, and 3.7. It is available
for installation via the Python Anaconda installer. All data
necessary for the benchmarking and prediction modules are

available for download directly in the package. The source code,
API document, and a Jupyter Notebook tutorial are available on
GitHub at https://github.com/ram-compbio/CANDO as well
as on http://compbio.org/software/.

■ DISCUSSION AND CONCLUSION

For interaction scoring, in addition to the bioinformatic docking
protocol described above, a compound-proteome interaction
matrix generated using our state of the art docking program
CANDOCK33 with predicted binding energies will be available
for use shortly. Indeed, the platform can accept protein−
compound interaction, and compound−compound similarity,
matrices generated by any method (virtual docking, molecular
fingerprinting, gene expression changes, etc.) and benchmark
their utility for shotgun drug discovery and repurposing. This is
especially useful given that molecular docking and chemical
fingerprinting techniques vary greatly in performance.34−36 A
Web server hosted on compbio.org that will feature many of the
functionalities described is under development.
The multitarget approach to drug discovery is vastly

unexplored and shows promise for identifying novel treatments
for various diseases based on the results we have obtained using
our software. The CANDO Python package allows users to
investigate drug−protein interactions on a proteomic scale for
the purposes of shotgun drug discovery and repurposing,
moving away from the single target and single indication
philosophy. The multitarget approach, which in our platform is
represented as the synthesis of many virtual screens, is conducive
for understanding drug behavior holistically, which will allow for
better elucidation of the therapeutic (and adverse) effects these
small molecules exert on biological systems. We anticipate that
broader use of this platform will inform researchers about
potential lead compounds that may be therapeutic for specific
indications, leading to accelerated and more efficient drug
discovery.
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Figure S1: Overview of the CANDO drug discovery and repurposing platform. (A) Data collection: drugs, small 

molecule compounds, and protein structures are collected from public databases, most notably DrugBank and the Protein 

Data Bank (PDB). Different protein sets are collated, including the multiorganism sequence non-redundant PDB set 
(BLAST p-value cutoff 10e-7) of 14,606 chains, a human-only set of 5,317 chains, and various pathogenic proteomes. (B) 

Interaction scoring protocol: interactions are computed between all compounds and all proteins using our bioinformatic 

docking method or virtual docking simulations, which essentially results in a virtual interaction screen for every protein 

chain against every drug/compound in the library. The bioinformatic docking protocol generates billions of drug-protein 
interaction scores rapidly (see Methods). (C) Drug comparison protocol: drug-drug similarity is assessed via computing the 

similarity (typically by calculating the root-mean-square deviation (RMSD)) between two drug-proteome interaction 

signatures, which allows each drug to be ranked relative to each other (based on the composition of their interactions). The 
exact protein set to be considered for the RMSD calculation can be modified in various ways. (D) Benchmarking protocol: 

the platform is benchmarked using known drug-indication associations as a gold standard, primarily from the Comparative 

Toxicogenomics Database. Briefly, an accuracy is calculated based on the number of times another drug approved to treat 

a disease is captured within a certain rank in the similarity list of a hold-out drug known to treat the same disease. This is 
repeated for all indications in the platform with at least two drugs associated and averaged at various cutoffs. (E) Putative 

drug candidate generation protocol: putative drug candidates for a specific indication or disease are predicted based on the 

similarity of their proteomic interaction signatures to those of drugs known to treat that indication, and ranked via a 
consensus voting scheme where the top compounds are prioritized if they are highly ranked in multiple similarity lists of 

approved drugs for that indication. (F) Validation pipeline: strong candidates proceed to validation studies, including in 

vitro and in vivo experiments, with the ultimate goal of conducting clinical trials for FDA approval. (G) Platform 
optimization: All results from the validation studies are fed back into the platform, using machine learning to optimize 

performance. 

 

 

 

 



 
 
 
Figure S2: Benchmarking performance across multiple versions and pipelines in the CANDO platform. The standard 

three metrics assessed by the benchmarking protocol across various versions/pipelines are pictured, including average 

indication accuracy (top), average pairwise accuracy (middle), and coverage (bottom).  Average indication accuracy is the 
average of each individual indication accuracy, the average pairwise accuracy is the weighted average of each indication 

accuracy based on the number of compounds/drugs associated with the indications, and coverage is the percent of indications 

with non-zero accuracy scores. The v1 and v1.5 pipelines differ only in the drug-protein interaction scoring protocol (see 
Falls et al. 2019), though all data including drugs, indications, and proteins is consistent. The total number of indications 

with greater than 2 drugs associated in v1 and v2 are 1439 and 1570, respectively. The number of drugs in v1 and v2 are 

3,733 and 2,162, respectively. The number of proteins in v1 is 46,784; v2 features two protein sets: the multiorganism 

sequence nonredundant set of 14,606 and a set of 5,317 human protein structures, both from the Protein Data Bank. The v1 
random control is computed via randomizing values in a 3,733x46,784 matrix, computing the root-mean-square-deviation 

between all randomized vectors, and performing the benchmarking analysis (see Methods). The result reported above is the 

average of 100 iterations. The v2 random control pictured was generated via a process similar to v1, but with an initial 
matrix of 2,162x14,606.  The colors indicate using a cutoff of 10 (light blue), 25 (blue), 50 (purple), or 100 (red) for the 

benchmarking analysis. The results of v1 pipelines and v2 pipelines cannot be compared directly to each other as the number 

of drugs and drug-disease associations changes between versions. The v2 human protein set pipeline currently performs the 
best in terms of v2, achieving the best scores in all three metrics. The benchmarking analysis helps to indicate which 

pipelines are relating drugs approved for the diseases more accurately, which will ultimately help to generate novel drug 

repurposing candidates more efficiently.  

 

 

 



 
 
Figure S3: AI-CANDO platform performance evaluation using the receiver operating characteristic (ROC). Shown 
are the results using logistic regression and random forest binary classifiers across 1,570 indications. A leave-one-out cross 

validation scheme is used where each drug approved for a disease is held-out and tested on a model trained with every other 

drug approved for that disease (i.e. 18,101 models are trained corresponding to the number of drug-disease associations for 

diseases with two or more drugs associated). An equal number of negative samples are chosen by randomly selecting from 
the set of drugs not associated with the disease. In each case, the positive class probability is outputted and the threshold is 

varied to generate the receiver operating characteristic curve (ROC), area under the curve (AUC-ROC), and area under the 

precision-recall curve (AUPR). The dotted black line indicates the expected ROC curve if guessing randomly, which 
corresponds to AUC-ROC and AUPR values of 0.5. As shown, the logistic regression models (orange) outperform the 

random forest models (blue) in both AUC-ROC and AUPR. The AI-CANDO pipelines are based on machine learning 

models trained using the set of 5,317 human protein structures from the Protein Data Bank to construct the drug-proteome 
interaction signatures. The dotted lines indicate the difference in performance when considering indications with more than 

ten approved drugs (red) or with a maximum of ten approved drugs (purple), indicating the importance of sample sizes for 

drug-indication prediction. The model training is amenable to any input features outside of drug-protein interactions, such 

as molecular substructures or gene expression signatures. Though the models perform better than random, continued 
development of both input features (enhanced drug-protein interaction scoring) and model architecture will further improve 

the AI/machine learning benchmarking and prediction module. 


