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Computational Multitarget
Drug Discovery

JEREMY A. HORST, ADRIAN LAURENZI, BRADY BERNARD, and
RAM SAMUDRALA

13.1 INTRODUCTION

Pharmaceutical substances have been discovered by means ranging from serendipi-
tous observation [1,2] to specific engineering [3]. The purpose is nearly always to
combat one particular disease, and the approach is most often trial and error.
The efficiency of these pharmaceutical hunts has been improved greatly by high-
throughput pharmaceutical platforms, but the requirement of physical experiment
makes these screens scale in expense linearly at best. The expense of discovering a
new chemical entity is estimated at US$0.5B-US$2B [4,5].

More recent successes in computational modeling of compound to protein docking
open the possibility of nonphysical prelaboratory screens. In our experience this has
vastly increased the success rate of bench experiments [6,7] (see Table 13.1, later in this
chapter). Computational modeling of protein ligand interactions has been applied to
find pharmacologic targets in known drug-disease pairs [8,9]. The more obvious use of
these docking methods is to guide discovery of a drug for a disease, as modeling enables
design [3]. Design does not need to be limited to one protein target. Searching for one
compound for multiple targets in the same pathogen increases odds for successful
inhibition of at least one target, and facilitates discovery of multitarget lead inhibitors,
[Note 1], which vastly decreases the probability of developing resistance (or habitua-
tion) and decreases toxicity via lowered effective dose [6,10-12] (Table 13.1).

Thus far the search for multitarget inhibitors has focused on one organism at a
time [6,9,11], but modeling multidisease effects has explained clinical patterns of
elimination for two diseases by one drug [13]. The advent of computational multidisease
screens will enable access to the most accurate aspects of computational screening,
bearing the possibility of vastly reducing barriers to drug development.
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FIGURE 13.1 Computational multidisease multitarget screening pipeline. (See insert for
color representation.)

In this chapter we elaborate the conceptual framework underlying rational drug
discovery, describe contemporary computational approaches, discuss emerging
concepts, and introduce a pipeline (see Figure 13.1) to integrate the array of promising
techniques and ideas that are already transforming drug discovery.

The schematic view of our computational multidisease multitarget screening
pipeline relates emerging concepts and techniques described in this chapter, which
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are already transforming drug discovery. The contemporary weaknesses of
computational modeling can be overcome to find pharmacologically active sub-
stances by careful selection of the protein and compound sets to be used in
computational screening (shown on the sides at top). To maximize the chance of
bioactivity and safety in humans, compounds to be considered for screening (top left)
should be selected from existing drugs (Section 13.6.3) or natural compounds
(Section 13.6.1). The selection of protein targets (upper right) that can be exploited
to stop a disease is a nontrivial problem requiring extensive analysis (Sections 13.2.1
and 13.3.1). The probability of finding pharmacologically active compounds is
heightened by targeting multiple proteins relating to a disease (Section 13.6.10),
which can be in the same signaling network (network targeting, Section 13.5.4), or in
different disease-associated pathogens (Section 13.6.11); screening against antitarget
host proteins can also be performed to control off-target effects (Section 13.6.4). The
protein structure (Section 13.5.4) and binding sites (Section 13.5.1) can be predicted
using knowledge-based methods (Section 13.4.1). Next, target proteins are prioritized
according to the susceptibility of the binding site (Sections 13.3.2 and 13.3.3), the
accessibility of the subcellular location, and the similarity of physiologic substrates to
the compound set (Section 13.4.6). The set of potential pharmacologic compounds are
then prioritized (top center) on the basis of features of the target protein and disease
site (Sections 13.3.1 and 13.3.2) and similarity to target substrates (Sections 13.2.4
and 13.4.6). Finally, the compounds are computationally docked to the active sites of
the target proteins (upper middle; Sections 13.4.2 and 13.4.5) with small bursts of
molecular dynamics (Section 13.5.2), scored (Section 13.4.3), and ranked with
respect to each other (Section 13.4.4). Initially a large compound set is evaluated,
with subsequent cycling between directed fragment-based optimization, and cycling
back to evaluate many similar compounds, which mimics the bench process for
discovery of a new chemical entity (Section 13.2.5). The profiles of predicted binding
affinities for each compound are compared to titrate selectivity and minimize
untoward side effects (lower middle; Section 13.6.10). The use of compounds
of known human safety profiles comes to fruition when approaching validation
(Section 13.6.1): for diseases with no sufficient model system and no existing cure,
existing pharmacologic agents may progress directly to initial clinical trials (center
bottom; Section 13.6.3). In addition, the multitarget approach of using compounds
that are predicted to be active against multiple pathogen proteins increases the odds
of success; if a compound is predicted to inhibit six proteins, there is a good chance
that it will actually inhibit at least one (Section 13.6.10). As an extension, computa-
tional screens of targets for multiple diseases increases the odds of finding a target
for the inhibitor; allowing the discovery process to drive disease selection enables
access to the most accurate computational predictions (Section 13.6.11). There are
initial indications that computational simulations can be more accurate than high-
throughput screening, possibly because they model bioactivity in an explicitly
physiological manner whereas the implicit physical interaction model of bench
screens is susceptible to nonspecific aggregation, covalent bonding, and promiscuous
binding (Section 13.6.6). Meanwhile, sophisticated bench analysis techniques offer
the pinnacle of accuracy, particularly the dissection of enthalpic and entropic
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contributions to the free energy of binding by isothermal titration calorimetry
(Section 13.6.5). Protein, whole pathogen, whole animal, and clinical analysis (center
bottom) feeds back to improve the accuracy of simulations (large arrow) by integra-
tion with existing pharmacologic data (middle right). Modeling the impact of genetic
variance on protein structure allows design of generalized inhibitors for rapidly
mutating pathogens and cancers, and specification to individual human differences to
control side effects (bottom right; Section 13.6.8). Our group and others have
demonstrated the early maturity of computational modeling of protein-ligand inter-
actions by predicting compounds for desired pharmacologic activity and testing them
in prospective experiments. A philosophy of freely available open-source software
has been embraced by many publicly funded groups (Section 13.6.9). These methods
not only save time and resources but also are beginning to be more accurate than in
vitro screening methods (Section 13.6.6). The combination of computational multi-
target drug discovery and stringent bench experimentation will lead a new era of
effective selective drugs.

13.2 THE PHARMACOLOGICAL HUNT OF YESTERYEAR

13.2.1 Ethnopharmacy

Since antiquity, before written history, humans have sought available substances
(mineral, animal, plant) to cure specific ailments. The hundreds of medicinal
substances catalogued in the materia medica of various cultures before and during
the time of Socrates [14—16] demonstrates that the hunt for pharmacological activity
may predate the technology of the scientific method itself. Whether disproving
hypotheses or embarking on fishing expeditions, experiences with curative and toxic
substances may have conceptually secured the intuitive approach of trial-and-error
investigation.

For thousands of years humans have applied trial-and-error experiments, separat-
ing out extracts of active agents to increase potency and remove unwanted properties.
The earliest records describing pharmacologic safety include descriptions of animal
models and progressive increases in dosage to test safety and efficacy [17]. Nonethe-
less, technological improvements were limited to purifications and altering the design
of the trial itself.

For 200 years we have isolated specific pharmacologically active molecules [18].
For a century we have knowingly modified the chemical structure of natural
compounds to tune desirable and undesirable effects. These attempts of drug
discovery and design have led to one specific molecule at a time to combat microbial
infection [19,20] and noninfectious diseases [21].

13.2.2 Protein Targets

With the advent of molecular biology we found the key to rational drug discovery:
inhibiting specific protein targets essential to the progression of the disease causing
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agent. Targets are carefully identified by the consensus of extensive experimentation
verified by multiple independent research groups. Thus the major goal of pharmaco-
logic development has emerged as discovering or designing compounds that demon-
strate favorable therapeutic activity towards a specific protein target.

Under the current paradigm, an attractive target is a protein essential to the
infection, onset, or replication of the disease-causing agent, or a protein able to control
one of these processes. The protein target should be sufficiently different from
homeostatic host proteins such that a drug that inhibits its action would not kill the
host. A target should be essential to the metabolism, growth, or reproduction of a
pathogen or the progression of a neoplasm, and maximally different from all other
antitarget human proteins.

13.2.3 Hitting the Target

Tests of pharmacological efficacy have been refined from observing the signs and
symptoms of a disease, to growth of the disease-causing agent (e.g., proliferation of
pathogens or cancer cells), to functional assays of specific target proteins. Meanwhile
the search for target protein inhibitors has always been governed by the same two
approaches, described below.

13.2.3.1 Random Screens Whether one at a time or run in parallel by brute
force, many available substances are tested for efficacy. Often a wide net is cast by
screening an enormous and diverse compound library (as many as 1.7 million
compounds [22]). There is a tendency to test only representatives from a given
group of substances; an intelligent step to increase the efficiency of the pharmacologic
hunt wherein the “hit” group is explored in further screening. However, reduced
screens increase the odds of missing subtle differences that might allow target binding
by nonsampled members of the group. Thus, where resources permit, large screens are
conducted. From the 1960s to the 1980s high-throughput screens, enabled by
extraneous technology such as assembly lines and robotics, permitted the pharma-
ceutical industry to blossom almost strictly according to the paradigm of vast
screens [21]. This is still the most common approach used by the pharmaceutical
industry today. Without deep understanding of the target chemistry, sampling nature’s
pharmacopeia may well be the most efficient approach to finding a starting place: a hit
compound [6,23,24] (Table 13.1).

13.2.3.2 Directed Exploration Intuitively, the response to finding an agent
that has any noticeable desired effect is to seek better effects by similar agents.
Intelligent searches for pharmacologically active substances generally follow ex-
plorative sampling around successful compounds already discovered in random
screens [25]. Similar existing compounds can be tested for more desirable activity,
or chemical modifications can be made by substituting, converting, and adding
moieties [26].

Those of us who develop computational techniques for drug discovery tend to
consider targets from infectious and noninfectious diseases as the same, but in reality
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they are not. Generally, the goal is to inhibit targets of infectious diseases (to increase
the therapeutic index), but a human disorder that is not directly caused by a pathogen
may be caused by the malfunction of a protein, so inhibition is not always the goal. For
malfunctioning proteins, the goal may be to discover a drug that promotes the active
conformation or overcomes the loss of effective signal activity. While computational
drug discovery techniques are quite robust, molecular etiology must be considered to
select the target and to specify the desired pharmacologic effect.

13.2.4 Similar Active Substances for Rational Selection

Sophistication in understanding the similarity of pharmacological agents was first
developed in the ancient processes of chemical extraction. Similar separation in
organic solvents indicates similar polarity and hydrophilicity, and often foretells
identical chemical moieties. Comparison of compounds with similar chemical
properties to compounds with similar pharmacologic effects resulted in the
concepts of pharmacophores [27] and quantitative structure—activity relationships
(QSARs [28]). These concepts enable intelligent exploration of the chemical and
structural space around the natural substrate.

In a case for which the activity profile of a vast drug bank is known for a particular
pathogen, analysis of similarly active compounds can facilitate understanding of the
basis of molecular recognition between a small molecule and its protein target [22].

13.2.5 Cycling between Random and Directed Searches

Directed exploration requires either identification of the physiologic substrate, a hit
compound, or deep knowledge of the target (discussed later in this chapter). Sampling
around successful compounds with similar active substances represents an additional
round of screening, which can be iterated to attempt improvement. The process of
following up an initial hit with rational design is termed lead optimization, and is
discussed further in Section 13.3.3.

By modifying functional and structural groups to enhance targeting by initial hits,
the pharmaceutical industry and the field of organic synthesis generally have
massively exploded the available pharmacopeia [29]. Thus directed exploration can
optimize a hit compound for a desired effect, and the process also feeds back more
bioavailable compounds for random screens generally. Chaotically cycling between
the two approaches for the gamut of medical purposes during the past century of drug
discovery has clearly resulted in enormous productivity [3], and an evolution of the
available pharmacopoeia.

13.2.6 Screening in Current Pharma

Very generally, the approach of major pharmaceutical companies is to run a large
chemical compound library against target proteins of interest using a simple protein-
based in vitro reporter system, or simply high-throughput screening (HTS). The initial
hits are then assessed in progressively complex and representative in vitro and in vivo
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model systems, whereupon active compounds are considered “leads” to a drug.
Finally, the long and arduous process of three phases of clinical trials is undertaken to
obtain approval from a governing agency (FDA in the United States).

The traditional cycling between random and directed searches is inefficient since
the blinded screens result in a vast number of hits and leads that fail to be effective or
safe in humans. The pharmaceutical industry (often colloquially referred to as “big
Pharma” or simply ‘“Pharma”) sets prices to derive profit beyond the tremendous
overhead [5], and as a result therapeutics are often out of reach to those who need it
most. For many infectious diseases there is little or no profit to be made, as the sole
prevalence is in impoverished peoples. As a result, many potential drug targets for
these diseases are ignored by Pharma [30].

Although much of Pharma follows traditional methods, the economic opportu-
nities within increasingly complex diseases have driven it to make some of the most
significant advancements [22,31-33].

13.3 ESTABLISHED TECHNOLOGICAL ADVANCEMENTS

13.3.1 The Exploitable Niche

Many proteins have an enzymatic cleft relatively specific to its substrate(s) by patterns
of charge, flexibility, and space [34,35]. Metabolites enter the cleft and emerge with
some chemical alteration. Reaction products have lower affinity for the active site, so
they dissipate. The physiologic substrate will not bind to the enzyme irreversibly, as
the purpose of the interaction is generally to modify ligand, target, or both, and
thereafter distribute this change as a signal to the cell or environment. This require-
ment of physiologic ligand expulsion creates the quintessential exploitable niche for
drug discovery.

The protein target is evolved to stabilize a thermodynamically unstable substrate
ligand transition state. The protein might bind the ground state, but it stabilizes the
reaction intermediate, which decreases the activation energy for the reaction and
thereby promulgates the ligand product state. Yet the protein is also evolved to favor
egress of the product after the reaction. The protein is most fit to bind the intermediate
(rather than ground or product states), but as this state is inherently transient, it should
be possible to find substances that are similar to the reaction intermediate but stable in
this form. As the transition state is the thermodynamically least favored state,
applying a ligand that is thermodynamically stable in a similar form will kinetically
overwhelm the protein and thereby inhibit target protein activity [9,26].

13.3.2 Target Dissection for Inhibitor Design

Proteins fold into complex structures. Some parts are evolved to stabilize the
topologic fold, while others carry out physiologic interactions, and others yet do
both [36]. The chemical structure of the active cleft dictates the function and the range
of adoptable structural conformations. Modeling the pattern of tolerated and optimal
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moieties across the active cleft enables design and virtual selection of pharmacologi-
cal inhibitors [37]. The presentation of hydrophobicity, polarity, and charge across the
surface dictates where complimentary functional groups should be placed.
Affinity can be understood as change in free energy on binding, which represents
the sum entropy and enthalpy changes for protein, ligand, and solvent. Significant
conformational constraints can decrease entropy of the ligand and protein during
binding. The protein attracts binders by the potential energy stored in the hydrated
hydrophobic pocket. Matching any nitrogen, oxygen, or fluorine moieties with a
hydrogen bond adds further enthalpic drive to the reaction, resulting in a more
strongly binding and therefore a more effective inhibitor (see Section 13.6.5 for
further understanding of enthalpy and entropy in computational drug discovery). Thus
knowledge of the three-dimensional chemical structure of the target active site
enables design of strong binders that might be used pharmacologically as inhibitors.

13.3.3 Rational Design and Optimization

As discussed above, the affinity of a hit compound can be improved by strengthening
contacts identified by analysis of the active cleft of the protein structure (enthalpic
improvement). Successful inhibitors bind a range of active-site conformations, or
induce a particularly stable conformation. The natural substrate of the target protein
can be studied to understand the contacts that stabilize the physiologic interaction, but
the chemical scaffold of the metabolite can rarely be used to design a stable inhibitor.
In part for this very reason, a good inhibitor generally avoids covalent modification by
the target protein, but the inhibitor may be modified by other proteins to increase
affinity (e.g., partial breakdown during first-pass metabolism, or phosphorylation by
other enzymes in the targeted pathway).

The goal of optimization is to improve the therapeutic index: to increase activity
(efficacy) and decrease toxicity (specificity). Optimization steps can increase affinity
or specificity, but seldom improve both simultaneously. Goals for efficacy include
outcompeting the physiologic ligand (metabolite), while the more complex goals for
toxicity include minimizing other reactions (specificity) and producing a favorable
absorption, distribution, metabolism, and excretion (ADME) profile. To balance
pharmacokinetic properties during lead optimization, the ADME profile is considered
in the context of the clinical indication [38].

Possible modifications to optimize organic inhibitors are nearly infinite. They
include adding any chemical group from a single carbon (methyl group) to a
heterocyclic, tethering components to force a particular conformation, or swapping
atoms to alter ionic or hydrogen bonding, or patterns of hydrophobicity. Changes
made to bioactive peptides alone include multimerization and additions of lipid,
polyethylene glycol, or peptidomimetic features [39].

Of course, much of the understanding of protein ligand interactions comes from
analysis using computational graphics programs. In accord, exploration of affinity
optimization can be carried out by hand at the computer terminal, applying experience
and intuition to fit specific chemical moieties to concavity forms and electrochemical
contacts [26,40]. The optimization process can also be applied by cyclically testing
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alterations of virtual hits from computational docking [41]. Alternatively, computa-
tional methods can be used to produce a group of virtual hits, of which a sufficient
number of compounds are tested at the bench to secure multiple submicromolar hit
compounds for follow-up animal experiments [6,32,42,43] (Table 13.1). Improve-
ments to the latter approach are the subject of Sections 13.4—13.6 of this chapter.

While many examples of structure-based drug optimization exist, a quintessential
example of computationally guided optimization is found in the work of Becker and
colleagues, in the production of PRX-00023 as a lead compound for major
depressive disorder and generalized anxiety disorder [41] (Table 13.1). The 1-nM
K; hit arylpiperazinylsulfonamide (PRX-93009) was found using purely computa-
tional methods by modeling the SHT;, GPCR (serotonin receptor 1A), docking a
library of 40,000 compounds, and running 78 virtual hits in an in vitro reporter
system [32] (Table 13.1). While the magnitude of target activity demonstrated great
success, the compound presented suboptimal selectivity and pharmokinetics. The
same group ran the compound arylpiperazinylsulfonamide against 50 other GPCRs
in vitro, modeled the experimentally derived interactions (o1- and o2-adrenergic
receptors and hERG), and optimized selectivity for SHT; 5 by removing or substi-
tuting moieties that strengthened off-target contacts, and by adding many compen-
satory on-target contacts [41]. The resulting compound, PRX-00023, was
sufficiently selective to SHT 4, and presented a pharmacological availability profile
similar to those of existing drugs for the same indication. The entire process from the
computational screen through entry into phase III clinical trials took only 2
years [41]. Unfortunately, although it was tolerated, the efficacy was not suffi-
cient [44,45]. Nonetheless, this adventure demonstrates that computational methods
can facilitate lead compound discovery and catalyze the process of getting to the
question of real clinical efficacy.

13.3.4 Multitarget Dosing

In many cases, no single drug is sufficiently effective in the therapeutic range to cure
the disease, or even to reduce symptoms or recurrence effectively. Thus, multiple
drugs can be combined to heighten the effect. Simultaneous effects on multiple targets
can decrease therapeutic doses, so that less efficacious and slightly more toxic
compounds can be used safely. In addition, pathogens often develop resistance to
single-drug therapy, but simultaneous occurrence of multiple resistant mutations are
exponentially less prevalent. The multitarget concept of targeting more than one
protein in a single dose emerged to address these issues.

Perhaps the most successful application of intentional multitarget drug adminis-
tration is presented in dosing with inhibitors of HIV reverse transcriptase, protease,
and integrase in the fight against HIV/AIDS [46]. Multidosing is titrated in a trial-and-
error manner, using patient suffering as the error. Because of this undesirable
situation, novel approaches have emerged to model synergistic effects of polyphar-
macology. For example, combinatorial effects have been tested in vitro using an
automated robotics—informatics pipeline. Pairs of substances that display synergistic
inhibition of Candida albicans growth, cytokine production, and tumor growth
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exhibit complex efficacy patterns; highly nonlinear effects are observed in plots of the
concentration of one compound versus the other. The complexity is evident of either
single-protein targeting by different inhibitors, or more likely, inhibition of multiple
proteins involved in the same physiologic process [31]. Further examples, design, and
benefits of polypharmacology are discussed throughout this book.

13.4 COMPUTATIONAL DRUG DISCOVERY

The structure-guided computational approach to evaluating protein-ligand interac-
tions generally consists of three steps: (1) conformational sampling of the rotation,
translation, and torsion angle degrees of freedom between the protein and ligand;
(2) scoring the resulting interactions with a discriminatory function to identify native
and near-native complexes from a set of incorrect conformations; and (3) ranking
possible ligands to distinguish between strong, weak, and nonbinders. Despite
previous successes, limitations persist in structure-guided drug screening and design
implementations to date. The principal discrepancy between what computational
drug discovery is intended to be and the reality of what it provides is that computa-
tional predictions enrich for, rather than design, compound—protein activity. In the
bestreported cases there are still many false positives and false negatives (Table 13.1);
structure-guided discovery is a rational starting point, but does not yet provide a
comprehensive view of biologic interactions.

13.4.1 Principles and Data Sources

As successful approaches to protein structure prediction do not model any part of the
folding process, modeling the physiologic conformation of a bound ligand has little, if
anything, to do with the actual physical process of binding. While the hypothetical
situation of modeling the wavefunction for each atom in the system could produce a
descriptive simulation of ligand binding, this approach is computationally intractable.
Again, analogous to the example of protein structure prediction [63], the methods
most successful for modeling the stable end state conformations are those that directly
consider many measurements of other end-state conformations [64,65]. In essence,
physical properties such as interatomic distances, repulsion, or attraction are taken to
build models to estimate stability of the protein-ligand system. The strength of
computational methods is in automating these analyses across enormous amounts of
ligand to protein pairs.

13.4.2 Docking

The term “docking” describes placement of a ligand onto the molecular surface of a
protein, in a manner that mimics the real physical interaction as closely as possible.
The interaction of any two particles above absolute zero temperature are dynamic, so
the protein—ligand physical interaction includes a distribution of conformations that
may be clustered extremely tightly (<0.1 Aroot mean-squared deviation) or include
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significantly dynamic protein and ligand movements, as can be found in the range of
holo PDB structures [66].

Docking can be performed in such a manner to offer alternative molecules to an
initial hit or known physiologic substrate, in which a base molecule provides a starting
conformation. Our group recently demonstrated the utility of this approach to peptide
inhibitor design, wherein we took as the starting conformation a strand from
the physiologic substrate protein (in the PDB structure), and substituted alternate
residue sidechains, following a greedy search protocol [7] (Table 13.1).

The complexity of the docking problem expands with the degrees of freedom of
each ligand. Unfortunately, while proteins are often treated as rigid surfaces on which
to dock a ligand, they are dynamic as well, including movements in response to ligand
binding, termed “induced fit” [67].

13.4.2.1 Translation In the most simple case of docking, a roughly spherical
ligand (such as a metal ion) is translated about the protein. The translation space
sampled can be a grid, limited to a region of the protein or a defined space surrounding
the protein, or can be continuous, in which case movements from a starting point must
be guided by a scoring function. In either case it is tractable to sample within 0.1 Aof
the binding site in a suitable model of the protein structure, and so selection of the real
binding site is left to the scoring function (discussed in the next section).

13.4.2.2 Orientation For the anisotropic case of all multiple atom ligands,
orientation must be considered. The rigid ligand is rotated about the grid or starting
point. To achieve the same 0.1 A resolution as described above for the isotropic
translation search, the requisite search space would be increased 51-fold for a
hydrogen molecule (the number of nonredundant 0.1A square gridpoints on a
0.76-A-diameter hemisphere) and exponentially more for ligands of greater size.
However, this search is still tractable, and has been applied in various attempts to
break down more complex molecules into rigid fragments.

13.4.2.3 Bond Rotation Nonrigid ligands contain rotatable single [sigma (G)]
bonds that dramatically increase the sample space. Simplifications can be made to
some rotatable bonds to decrease the impact on sample space, for example, removing
bond angles that produce eclipsing of large repulsive chemical groups. However, the
existence of multiple rotatable bonds in a ligand generally breaks the tractability of the
docking search, and heuristic strategies must be employed. The earliest versions of
docking methods simplified flexible ligands as rigid [68], yet even now rotatable
bonds not only increase the search space but also decrease the accuracy of all docking
methods [64,69]!

Most docking methods combine the three types of movement: translation, orien-
tation, and rotation. The combined movement is generally guided by a scoring
function, but the means by which they are applied can be very different [64,70]. For
example, the movements from one sampled conformation to the next might be
decided by comparing scores for the first and a stochastic progression (Metropolis—
Monte Carlo approach), or the trajectory resulting from an estimate of forces in the
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system (molecular dynamics approach). Therefore, at the heart of the docking
protocol is the scoring function.

13.4.3 Scoring and Discriminatory Functions

Functions for evaluating protein—ligand interactions are generally referred to as
scoring functions. Scoring functions applied to the problem of selecting the most
realistic ligand conformation among a set of docked poses is a discriminatory
function. Protein—ligand scoring functions are categorized into molecular dynamics
forcefields, empirical functions, and knowledge-based functions. Forcefields are
commonly built to explicitly model physical forces (acceleration) of idealized
gas-phase enthalpy, including electrostatics and van der Waals forces (shape com-
plementarity [71]). Often omitted are the contributions of entropy (e.g., torsional) and
solvation, while heuristic considerations such as number of hydrogen bonds are most
often included [64].

Assignments of the terms knowledge-based and empirical are historical; both use
experimental data to build scores and coefficients. Both perform statistical compar-
isons of the query case to many bench laboratory-derived binding affinities and/or
structural conformations. Generally, empirical functions combine physical terms by
regression analysis of experimental binding data, whereas knowledge-based func-
tions derive scores for ranges of spatial parameters (distance, torsion angles, or
voxels) from experimentally derived structures without any attempt to divide the
underlying physical forces [64,65].

The molecular dynamics forcefield-assisted model building with energy refine-
ment program (AMBER) represents the flagship molecular dynamics function.
AMBER models the potential energy of each conformation with a set of terms for
covalent bonds, bond angles, torsion angles, electrostatics, and van der Waals
energies [72]. AMBER has gone through continual updating by many contributors,
to progressively incorporate physics-based models of diverse systems and optimize
the coefficients of the formula for specific types of interaction [73,74]. Although
molecular dynamics forcefield functions hypothetically have the capacity to direct
ligand docking into the lowest energy conformation, using these functions to model an
entire protein—ligand system has the tendency to result in models continually
expanding out from the physiologically compact state; artificial constraints can be
used to hold the model together, but these constraints represent a deviation from the
goal of physics-based modeling, are not generalizable, and the results are usually not
predictive. Nonetheless, judicious use of a limited progression of molecular dynamics
steps guided by these functions can be highly useful for modeling protein—ligand
systems [75].

Increased success in developing discriminatory functions have often arisen from
specifying the type of protein target, with the presumption that different forces
dominate ligand binding by proteins such as transmembrane receptors and transcrip-
tion factors. However, in 2009 our group developed a generalized knowledge based
discriminatory function score to select optimal poses for any type of ligand, within a
margin of error that can be sampled by a course lattice method. This knowledge-based
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function outperforms more than 20 other published ones in several docking decoy
tests, by analyzing interatomic distance distributions from the repeating units of high-
resolution small-molecule crystallography structures [65]. In part, the strength of this
method is the quality of the intermolecular contacts; the crystals of small molecules
are much more regular than those of proteins, and so more accurate structures are
modeled from the electron density maps. However, exhaustive consideration of the
statistical derivation makes this function even better. We considered radial versus
normalized frequency distributions, mean versus cumulative reference state, reduced
versus complete composition, and the maximum interatomic distance to be consid-
ered (cutoff). Across a diverse set of protein interactions with small molecules, other
proteins, and DNA, the radial mean reduced derivation performed with the most
accuracy [65]. The result is a highly accurate discriminatory function which may
provide resolution sufficiently fine to build a continuous function that could act
as a forcefield.

Future work to improve scoring functions includes efforts to bolster the accuracy of
knowledge-based or empirical functions to address the goals of molecular dynamics
approaches. If forces are to be divided into physical contributions, proper handling of
entropic and solvation contributions are needed (Section 13.6.5). Further improve-
ments include representing three dimensionality to model the physical intricacies of
electron sharing through hydribidized orbitals (e.g. sp°), and multibody potentials that
can account for resonance patterns [76]; there are enough high-resolution structures in
the Cambridge structure database [77] to approach these goals [65].

13.4.4 Relative Affinity Ranking

Ultimately there are two roles for the ligand pose selected by a scoring function: to be
the representative for ranking among the best scoring poses of other ligands, and to
identify the pattern of contacts that might be retained or improved during optimiza-
tion. Ideally, protein—ligand scoring functions should be able to identify the native or
near-native ligand pose from a set of incorrect conformations (i.e., discrimination),
and to distinguish between small molecules that do and do not bind a target protein
(i.e., relative affinity ranking). This is unfortunately not the case with current methods,
as discriminatory functions perform poorly at correlating scores with experimental
binding energies. An ideal ranking function would accurately calculate the free
energy of binding. Relation to the affinity estimation for another ligand (another drug
or physiologic substrate) would be sufficient to estimate biological activity; this
thermodynamic understanding would indicate which ligand would outcompete the
others by binding strength. The kinetic considerations (e.g., target tissue concentra-
tion) could be designed around this understanding. Clearly ranking functions could be
extremely useful in computational drug discovery, but currently no function has been
shown to consistently reach these goals. An accurate relative affinity ranking function
is needed in the field of structure-guided drug screening and design, if these predictive
methods are to serve as a useful an complementary tool to prospective experimental
investigation.
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Knowledge-based functions perform quite well at discrimination [65] but
inaccurately provide scores proportional to the size of the ligand, due to their
simple additive nature, and therefore may be of limited utility for relative affinity
ranking. Empirical scoring functions fitted to experimental binding energies
perform rather poorly, especially for classes of molecules not included in the
training set, and significantly lack in discriminatory ability. Often experimental
complexes are used to correlate scores with experimental binding affinities; in
practice, this is not useful, as the objective is to find new compounds that bind to
a protein target. The most relevant experiment is to test known inhibitors against
alternative protein structures that are not bound by the small molecule of
interest, and then evaluate the correlation coefficient (which is invariably
lower [78]).

The ability to accurately discriminate the correct binding mode of individual
ligands and then to rank the relative binding affinity between different ligands can be
treated as distinct computational modeling problems. All protein-ligand scoring
functions can be applied as ranking functions, but dissecting apart docking and
ranking allows for considerations more important to each problem. For example,
counting hydrogen bonds and calculating loss of torsional entropy is essential to
ranking ligands, but many conformations of the same ligand can be equivalent for
these factors [64]. Therefore, the methods used for discrimination and relative affinity
ranking should be separated into distinct functions and developed independently,
which has not previously been the case.

13.4.5 Comparison of Docking Methods

Many methods have been created to dock ligands to proteins [64]. But bias and
overtraining have impeded attempts of evaluation in the field of computational
biology, as demonstrated for protein structure prediction with the solution of the
CASP experiments [63]. Blinded or independent examinations are the proper
means for unbiasing assessments of predictive methods. Minimizing bias opti-
mizes the estimation of the accuracy in prospective experimentation, which is the
purpose of these methods. A more recent experiment performed such an indepen-
dent test between seven docking programs (Surflex, LigandFit, Glide, GOLD,
FlexX, eHiTS, and AutoDock) on 1300 holo structures from the PDBbind
database. Ligand conformations were converted through SMILE strings using
two different tools (Corina, Omega2). Two commercial products (GOLD, eHITS)
outperformed the other methods, with mean accuracy <3.0 A root mean-square
deviation (RMSD) and >55% of cases <2 A RMSD. The use of holo rather than
apo structures is a caveat to the relevance of these findings to prospective drug
discovery. Furthermore, it is likely that the examined methods were trained on
some of the same structures as those used to test them, which gives unfair
advantage. While prospective experimentation is the only true test of a computa-
tional method, this study describes the most independent comparison of methods
for drug discovery known to us [69].
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13.4.6 Ligand Comparison

Small-molecule structure—activity relationships (SARs) are applied to find active
substances similar to initial hits found through bench or computational techni-
ques [28]. The underlying concept follows that the activity of the substrate transition
state can be analogized by chemical similarity to any other compound [79]. It follows
that the activity of a hit ligand can be analogized by chemical similarity to any other
compound. The ligand comparison is calculated by comparing the geometric distri-
bution of electronegativity and hyrophobicity for the hit ligand against a database of
existing small molecules. Improvement accurate predictions of the similar active
substance are found by limiting the database to known bioactive molecules. This
approach is powerful in part because of the small requirement for computational
resources compared to docking.

While the structure activity relationship of small-molecule organics has been
applied to ligand optimization traditionally, the concept of similar chemical
structures having similar bioactivity has recently been applied to discover initial
hits [9,11,30,80] (Table 13.1). The rationale here is to use known substrates or
predicted ligands in place of the initial hit. It is logical that the physiologic substrate
would be a productive starting place for detection of similar active substances. This
brand of SAR applications is expected to greatly improve the efficiency of drug
discovery and expand our understanding of the coevolution of proteins by their
similar physiologic substrates.

Other computational methods compare structural and chemical properties
among protein—ligand binding sites directly without considering ligands [81-
84]. For example, Das and colleagues dissect a binding site into a profile of
probabilities such that a surface patch with a particular physicochemical property
will present at a specific distance to another on the binding site surface [82]. When
the binding site and tertiary structure is known or predicted, this analysis enables
rapid detection of target identification and understanding of multitarget effects, and
suggests which compounds to screen for pharmacological inhibition. Binding sites
can be predicted by sequence analysis [85,86] or mapping by structural
similarity [30].

13.5 MORE RECENT TECHNICAL IMPROVEMENTS

13.5.1 Automated Binding Site Identification

A variety of sequence- and structure-based approaches are used to predict protein—
ligand binding sites. For many globular soluble enzymes the binding pocket is easily
identified by its characteristic narrowness and depth, which allows harboring of small
molecules. This analysis can be automated by geometric measurements; for example,
surface concavities can be found by comparing the accessibility of different-sized
spheres to the solvent-exposed surface [87]. Meanwhile, many protein active sites are
not as obvious from the protein structure; these more difficult problems demand
sophisticated bioinformatic tools [88].
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Often a ligand can be mapped to the query structure from a holo template
protein identified by sequence or structural similarity [30,89,90]. Where ligand
mapping is not available, and when results are not consistent, conservation
analysis is useful. In particular, proteins from poorly characterized families cannot
always be understood by direct similarity analysis. Sequence analysis can evaluate
multiple aspects of evolutionary conservation and residue identity to predict
binding sites with comparable accuracy to structure-based methods [91-93].
Structural analysis or structure prediction can be combined with conservation
calculations to improve interpretation [36,86,90,94]. Our group has found, across
many protein active sites, that hidden Markov model estimates of relative
conservation entropy is the most accurate single predictor of residue functional
importance [36,85].

Differences in residue identity within otherwise similar binding sites control
metabolite specificity and variation in enzymatic reactions [95,96]. Thus the
residues that specify ligands are seldom conserved. More advanced analysis is
indicated to find these residues; function prediction methods may be useful for
selection of atomic contacts to targets during computational drug discovery. Our
group has demonstrated that machine learning can be used to transfer dissections
of structure and function from many proteins to predict the active sites of
highly different query proteins [36,86,93]. Our methods predict protein—ligand
binding sites de novo using an algorithm that generates metafunctional signatures
(MFSs) by combining multiple sources of information reflecting functional
importance. MFS can be applied to a protein sequence or structure and has
been shown to be more effective in identifying functional sites than have other
popular methods [36,86,93].

13.5.2 Docking with Protein Target Dynamics

Biologically active proteins are in continuous motion, yet the majority of protein
structure information is limited to the most stable form of a protein when
crystallized in artificial conditions. Induced fit is a widely recognized challenge
in computational drug screening, wherein the protein undergoes significant
conformational changes on ligand binding [67]. As a consequence, traditional
rigid protein-ligand docking is insufficient for structure-guided drug screening,
and is often misleading. The active cleft surface is treated as rigid, although a
conformational shift occurs on binding a physiologic substrate, inhibitor, or
interacting protein. This conformational shift brings together the mediator func-
tional groups of the catalytic reaction. The energetic force to bind the reagent
metabolite is generally enthalpic, so the bound holo conformational state of the
protein is closest to the optimal pharmacologic target. Dynamics simulations
increase the possibility of surveying a physiologically relevant conformation
beyond using the static crystal structure alone. For example, our group showed
that, for a group of HIV-1 protease inhibitors, using molecular dynamics to model
changes in the target protein improves the correlation coefficient of predicted score
versus measured affinity from 0.35 to 0.88 [75].
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Modeling target and ligand flexibility facilitates the multitarget approach. Multiple
stable conformations or highly flexible portions of a ligand increase the range of
possible target clefts in which the ligand might fit. The benefit of ligand flexibility for
action on multiple proteins is exemplified in the difference between first- and second-
generation HIV protease inhibitors [55].

Along with our work demonstrating the importance of target protein dynamics in
computational docking, many other groups have incorporated target flexibility into
their software. For the rotatable bonds of ligands discussed in Section 13.4.2, however,
each additional bond considered for rotation dramatically increases the sample space,
and so slows down the search. Therefore our approach of using short spans of
molecular dynamics (200 steps) appears to be most computationally reasonable, and
is used widely [6].

13.5.3 Structure Modeling for Target Docking

The concept of template-based modeling can be understood and applied in different
ways. One approach that has been shown to work is to model the query protein using a
template, and then dock to this model. However, this is not the only way to make use of
a template. It is not always necessary to build a structural model. If there is a known
drug or ligand interaction for a template protein, this information may be transferred
directly, based on the similarity between the proteins [30]. If docking is indicated, it
may be more relevant to dock to the template itself rather than a model built using the
template—the accuracy of the template is known, while the model built with the
template is guaranteed to be less accurate [78]. A good template will have highly
similar binding sites to the query protein, sufficiently similar that the differences in
residue identity can be modeled after docking.

The structures of all human GPCRs have been modeled with I-TASSER [97], the
best existing protein structure prediction method (albeit an older version), and are
freely available [98]. Various publicly available methods are capable of modeling
structure and ligand docking for GPCRs. For example, our group combined
I-TASSER with our consensus refinement method [99] to perform among the very
best groups in a prospective prediction experiment to predict structure and ligand
conformation for the second human GPCR X-ray structure [100]. Meanwhile, the
proof of concept for all modeling drug discovery for GPCRs was accomplished in
2004 by Becker and colleagues [32], as discussed in Section 13.3.3. Briefly, the
authors modeled five GPCRs based on the bovine rhodopsin structure (PDB id 1£88;
the only GPCR structure known at the time), used the anchor and grow approach in
DOCK4.0 [70] for ~150,000 compounds selected from ~1,600,000 based on
physical properties, and ranked the resulting protein—compound pair conformations
using in-house software. The outcome of this study includes 50 substances with ECs,
<5-uM activity, a novel EC5y <100-nM compound for four of the five target GPCRs,
and an agonist lead compound [32] (Table 13.1). However, there was no comparison
performed to check for enrichment versus docking to the template rhodopsin
structure.



MORE RECENT TECHNICAL IMPROVEMENTS 281

A study in 2009 explored the opportunity of template-based modeling and docking
for 38 proteins, 2950 ligands of known bioactivity, and 95,316 decoy ligands [78]. The
exploration was relatively thorough for protein structure modeling, using templates
across a broad range of sequence identity (20-99%). In this study the consensus result
of docking against multiple template based models was better than that for docking to
the single best model or even the apo structure of the protein (in most cases), and in
many cases the consensus model accuracy approached that of docking against the
target holo structure. Meanwhile, this study also compared bioactive ligand selection
enrichment for docking to the homology model templates versus the actual models.
There was a slight trend for holo templates of sequence identity below 40% to more
accurately select the bioactive ligands than models derived from the holo template
(R=0.22 across sequence identity range). There was no clear range for which it
would be better to use homology models. When using apo templates or models
derived from them, the correlation for sequence identity dropped (R=0.07): se-
quence identity is not predictive of whether it is better to use the apo template itself or a
model derived from it [78]. On average, docking to templates produced insignificantly
higher enrichment for bioactive ligand selection than docking to models of the target
protein (Student’s paired one-tailed #-test p =0.29). So, on the basis of this study
using the latest versions of MODELLER and DOCK, it appears that for the purposes
of docking, there is no great benefit to spending the computational resources to build
all atom models of target proteins. Meanwhile, the success of the consensus of models
suggests that clustering may be useful for finding the best template on which to dock,
and that improvement in structure prediction methods may breach the accuracy of
docking to homolog holo structures. Nevertheless, the high resolution of the template
is, at least for now, a better data source of analysis, whereupon our ability to detect the
evolutionary connection between homologous proteins is the most powerful tool.

13.5.4 Ligand-Target Networks

Metabolic systems bring an environmental substrate through a series of reactions that add
or remove chemical moieties. The majority of the substrate is often maintained through
the process, such that each protein controlling the metabolic network will recognize
similar features of the substrate. Therefore, if a drug is selected or designed to inhibit a
particular protein target, it is highly likely that the drug will inhibit multiple proteins of
the metabolic network [12,101]. Thus many drugs achieve higher efficacy by uninten-
tional pathway multitargeting [102], with benefits described throughout this text.

Network targeting involves activity of a compound across multiple pathways.
Multiple routes of attack may be necessary to effectively stop neoplasms or pathogens
that have multiple compensatory pathways to allow survival and proliferation.
Increasingly, we are learning that simple linear or cyclic pathways are the exception
rather than the rule, so even to inhibit a single pathway, it seems that multiple
indirectly connected proteins must be inhibited [101]. If one adopts a multitarget
philosophy, the principal difference is a need to monitor the interconnectivity of the
targets, maximizing relevance to the clinical question.
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13.6.1 Starting with Nature

The current drug discovery process itself both mimics and expedites the natural
evolution of bioactive products. Living organisms have influenced the creation and
relative abundance of chemicals on Earth. An example, would be the production of
oxygen by conifers, which enabled aerobic metabolism; the cyclic feedback between
life and that which is traditionally considered nonlife (small molecule organic
compounds) describes a co-evolutionary pattern that can be exploited in drug
discovery.

The current diversity of natural chemicals emerged within the same evolutionary
soup. This shared evolutionary chemical context sets the stage for various organisms
to use the same compounds to control different processes, making one molecule
relevant to diverse physiological activity. The observation that structural folds are
largely conserved, even when sequence and function are not, provides logical
evidence that one compound can be an excellent initial candidate for many different
protein targets. The topological forms of proteins (folds) present much more
consistency than do those of small molecules. For example, the proteins of various
metabolic pathways appear to have evolved from the same template protein, with
mutations conferring the ability to perform different chemical alterations. Meanwhile
the binding site within a particular pathway is relatively conserved, and a ligand that
impedes a reaction in one protein will be promiscuous to the pathway. The result of
these patterns of evolutionary divergence is that natural chemicals are highly
multitargeting [6,103].

The network of targets for existing drugs reveals physiologic relationships
between the proteins within or between proteomes [9]. In particular, not all human
disease targets are predicted to be bound by natural small molecules, and it may be that
the respective interaction networks are distinct [103]. The relatively unique human
drug—target network may be explained as bearing those more unique protein functions
for which there are minimal compensatory self-righting mechanisms. The uniqueness
of the target proteins seems to coincide with constrictions in the protein interaction
network, rather than network hubs that tend to be targetable by natural compounds.
Presumably, these network constriction human targets are not canonical enzymes,
receptors, or channels—in other words, prototypic natural compounds are not their
substrates. Thus, for these targets, natural products and perhaps their derivatives may
be insufficient.

Nonetheless, it is clear that there is some piece missing from the immediately
preceding argument and referenced data, as 614 of the 974 new chemical entities
discovered from 1981 to 2006 were natural products or derivatives thereof, many of
which do target host proteins [104]. Leaders in bench drug discovery look to exotic
organisms for drug leads continually (e.g., scorpion venom). Natural compounds can
be very difficult to prepare outside the source organism, and few exotic organisms are
cultivatable on a large scale. These compounds are the products of intricate protein-
mediated metabolic pathways seldom understood well enough to be genetically
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engineered into E. coli or yeast. Computational aid to retrosynthetic analysis enabled
mass production of natural active products via total synthesis [105].

Thus natural products may not be able to inhibit or activate all host targets, but for
any protein that acts on a natural substrate, they likely will be useful. Thousands of
years ago we recognized the pharmacological capacity of many natural materials, and
over the past few decades nature has still been the greatest source for new drugs.
Natural compounds may not comprise ideal decoys for complex substrates such as
DNA or other proteins, but we can keep looking to them as one principal source for
bioactive compounds. The evolutionary pressure of competition clearly selected for
organisms ready to fight other organisms—the resulting arsenal of molecular
weapons—is a robust starting point for rational drug discovery.

13.6.2 Peptides and Their Derivatives

Peptides represent a natural modular scaffold that can be easily designed to mimic
natural substrates and binding partners for drug discovery. Knowledge-based protein
structure prediction methods can be applied by reverse engineering the amino acid
sequence of a natural binding partner to optimize binding. For example, our group
created peptide inhibitors by redesigning the sequence of the dengue viral entry
protein substrate, which prevents infectivity of dengue virus at the micromolar
level [7] (Table 13.1).

Peptides present some benefits for computational drug discovery relative to
standard organic small molecules. One benefit is the modularity, which enables
design, massive replication, and low production cost. Another aspect is that the
chemical nature of sidechain and mainchain moieties are evolved to stabilize proteins,
and therefore in some cases bind active sites more tightly than organic small
molecules. The rapid degradation by endopeptidases is generally seen as a disadvan-
tage because of inactivation and clearance, but protease recognition is designable to
some extent, peptide degradation minimizes immunogenicity, and some clinical
indications call for rapid clearance.

Disadvantages of peptides also include susceptibility to nonspecific endopro-
teases (which exist nearly everywhere in the body) and low oral bioavailability.
Even with these disadvantages, peptide inhibitor design can be useful as part of an
in vitro model for finding or verifying targets, and for identifying specific binding
site contacts to be targeted by small molecules. However, modifications to
overcome disadvantages are chemically straightforward: multimerization [e.g.,
poly(ethylene glycol)], lipidization, and adding peptidomimetic moieties (e.g.,
alternate atoms to substitute the amide bonds). Expressible peptides can be
modified chemically to produce vast functional diversity suitable for many
pharmacologic applications [39].

13.6.3 Off-Label Drug Use

All FDA-approved drugs present advantages similar to those of natural compounds
because of their known bioactivity. Added benefits of screening existing drugs
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include the known safety and ADME profile, demonstration that the compound will
get through first-pass metabolism and get to at least some sites of action, and a hint of
certainty that they will have the promiscuity of ligand—protein interactions dis-
cussed for natural compounds. Perhaps most importantly, since they are already
approved for use in humans, the only barrier to clinical trials is demonstration of
efficacy [6].

While it appears that use of existing drugs enriches screens for hit compounds, no
one has done the proper side-by-side background control of testing a random sample
of compounds. Current Pharma compound databases are designed to optimize
bioactivity and ADME profiles in the case of presenting a hit inhibitor, such as
following Lipinski’s rule of 5 [106]. However, four bench screens searching for
inhibitors of Plasmodium falciparum demonstrate a trend toward enrichment for
existing drugs (Table 13.1). Massive screens of ~2 million compounds from the
chemical libraries of Novartis [22] and GlaxoSmithKline [107] resulted in 0.35% and
0.68% micromolar hit rates, respectively. In earlier studies, 1000-fold smaller bench
screens of ~2000 existing drugs for Plasmodium falciparum resulted in 0.71% [23]
and 1.7% [24], suggesting slight enrichment. Meanwhile, our computational screen of
the same drug database selected 16 compounds, of which 44% are micromolar
inhibitors [6] (see Table 13.1 for further details of these studies). Although these giant
Pharma companies have put decades of data and analysis into the design of their
chemical libraries, similar, if not better, success rates can be achieved on a 1000-fold
smaller scale if these screens are simply run with existing drugs. Moreover, our group
has shown that publicly available computational methods can vastly enrich this
search, and thus recommend existing drugs to be the starting set for any computational
drug discovery project.

Understanding the biologic activity of known drugs, of course, makes it easier to
repurpose them for desired physiologic effects. It is important to note here, within this
chapter on automated tools for drug discovery, that deep understanding of existing
drugs and the disease of interest enable enrichment far beyond that currently available
with contemporary computational methods.

Accordingly, off-label uses are continuously being discovered. Carbamazepine,
a widely used anticonvulsant and mood stabilizer, seems to combat hepatic
fibrosis [108]. A lead for polycystic kidney disease has been discovered by
intuiting the target, for which an inhibitor was already developed in effort to
treat diabetes [33].

The trend for drugs approved for treatment of one disease to effectively treat
another one underscores the importance of epidemiologic studies to track disease
patterns in medicated patients. Clinical informatics is an emerging field intended to
handle issues such as this. Meanwhile, the reward for repurposing an existing drug is
highly similar to discovering its first use. In the United States, intellectual property
and patents are defined by the purpose; if you can figure out a new use for a hula hoop,
you can patent it. A new use for an existing chemical entity is unique intellectual
property. The only successful generalization of profit for a drug has been through
manufacture of the physical drug itself. Thus, opportunity awaits in repurposing old
drugs to new tricks.
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13.6.4 Off-Target Effects

Virtual drug screening methods have been employed to help identify sources of off-
target drug effects and investigate their potential to cause adverse or desirable side
effects [8,9]. Desirable off-target effects include unintended multitargeting of other
proteins in the target pathogen [6], fighting other infectious agents [8,109,110], and
balancing untoward effects of other drugs being used in a polypharmacologic
regimen. Through proper screening of relevant host and pathogen proteins and
metabolites, current methods can enrich the design of off-target pharmacology.

Off-target effects can be predicted by ligand-docking methods [6,8,109-111],
ligand structure—activity relationships [9,112,113], and comparison of protein bind-
ing sites [81-83,111]. After decades of development [28], SAR methods are emerging
as clinically useful [9] (Table 13.1). Meanwhile, methods to compare protein-binding
sites and affinity-ranking methods are still in their infancy, yet the latter has already
demonstrated clinically significant utility [8].

Although virtual screening methods have been useful to inform drug design,
many current methods are not able to account for off-target drug effects because they
require structural information that is not available for most of the human prote-
ome [114]. Further, because of the difficulty of crystallizing membrane proteins,
structures for these proteins are highly underrepresented, making up less than 1% of
the structures in the PDB [115]. Nonetheless, nearly half of available drugs act on G-
protein-coupled receptors, a major class of membrane signal receptors [116].
Therefore it is important to consider membrane proteins in the identification of
off-target drug interactions. Although structural data are lacking, protein sequence
data cover nearly the entire human proteome [117]. Therefore it may be useful to
develop computational protein sequence analysis methods to identify the similarity
of protein—ligand binding sites through their meta-functional signatures [93], which
could model drug toxicity explicitly across human and pathogen proteomes. The
most useful off-target screening methods will combine comparative analysis of
ligand structure, protein structure, protein sequence, and the types of interactions
between protein and ligand.

13.6.5 Affinity, Entropy, Enthalpy, and Optimization

Dissecting the contributions of entropy and enthalpy to changes in the free energy of a
system through bench calorimetry has enabled a much more rationalizable approach
to computational drug discovery. This work, led by the Freire group, stems from the
universal approach of balancing losses in entropy with gains in enthalpy. The novelty
is both the focus on enthalpic improvements, and using isothermal titration calorim-
etry as a tool by which to separately measure the enthalpic and entropic contributions
to affinity [118-120].

Affinity is improved with larger losses in free energy, such that either gains in
entropy or loss in enthalpy could drive a reaction. Improvements in one (entropy or
enthalpy) can overcome deleterious effects on the other. Meanwhile, scientists
traditionally measure only affinity (Ky) or inhibition (ICsy, ECsg, K;). These are
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one-dimensional measures of binding strength, which are highly useful, but it can be
difficult to interpret the correspondence of ligand structural changes to whole affinity
differences. By dissecting the contributions of enthalpy and entropy to the gains or
loss in affinity, one can see how the changes are made; ligand changes that effect
conformational freedom represent entropic changes, while improved interactions and
fit are enthalpic [119]. By separating the measurement of these effects in bench
studies, the optimization process obtains direct logical feedback. A change to the
ligand designed to improve enthalpic contributions might have much more severe
entropic consequences than anticipated.

Attempts to gain affinity driven by entropy might not make a significant change
because of constraining the protein for an entropic loss. Without the separation of
analyses afforded by calorimetry, the lack of improved affinity might be misinter-
preted as enthalpic losses, which would misdirect further attempts at optimization.
Thus the relatively simple concept of separating affinity measures into enthalpic and
entropic contributions through isothermal titration calorimetry enables feedback for
straight forward rational design [119,120].

Decrease of conformational restrictions in the protein or ligand correspond to
favorable entropic changes. Entropy estimations are useful to interrelate affinities
between different ligands (affinity ranking). However, it has been argued that
optimization efforts are better spent on improving the enthalpy of binding [121].
Considerations for design include the fact that every added hydrogen bond has both
enthalpy of desolvation and of binding, and that each 1.4 kcal/mol of enthalpy change
drives the reaction thermodynamically by an order of magnitude. These considera-
tions are so important that Freire has suggested that binding enthalpy should be
measured by isothermal titration calorimetry whenever a new hydrogen bond donor or
acceptor is considered [121].

Separate measures of enthalpy and entropy can enable better estimates of both
contributions [118-120,122], but what should go into the enthalpy calculation?
Many types of enthalpic contributions are understood and well approximated.
Details such as the contribution of hydrogen bonds are modeled by comparing the
docked donor—acceptor distance to the ideal distance for proton sharing, in the
context of the similar interactions available in the solvent. Binding enthalpy was
estimated for 25 ligands in 7 proteins within a standard error of 0.4 kcal/mol, by
supplementing estimates of conformational enthalpy change, with estimations of
changes in solvent accessibility for solvent molecules in shells < 5-7 Aaway from
the ligand, and a correction for protonation [118]. Modeling changes in enthalpy
across different ligands may therefore be possible, and useful for estimating
affinity rank.

The contribution of space filling to enthalpy had not advanced substantially since
the shape complementarity analysis of Lennard-Jones [71]. In 2010 the Freire group
presented a study on how filling an empty protein cavity affects enthalpy [122]. For the
example of filling clefts in the binding pocket of HIV-1 protease, a pattern of effects
emerged across a limited spectrum of moiety size. When the cavity was not
completely filled by the ligand moiety, van der Waals forces benefitted enthalpy,
but at the cost of entropy. When the moiety was enlarged, the protein accommodated
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more optimal filling of the cavity space, adjusting around the ligand to reach a more
enthalpically favored conformation. Entropy increased, driving the reaction.
The interactions enabled by optimal space filling may have allowed the protein to
stably undergo pivot motions around this region, such that stabilizing interactions at
the ligand interface allow other areas of the protein to be more flexible, and thus the
reaction becomes entropically favored. There is an apparent overstretching point at
which the ligand pushes the protein into a more strained set of conformations, which
penalize by both entropy and enthalpy. Thus proper filling of the space can add
entropic and enthalpic driving force to binding [122].

Through the analysis provided by the Freire group during 2000-2010, we have
gained the ability to dissect very basic contributions of designed ligand moieties.
Bench isothermal titration calorimetry analysis enables specific feedback to improve
our estimates of entropy and enthalpy, and inform changes for computational design.
This combination of a relatively simple but highly accurate bench technique with
computational modeling is an emerging tool that can carry us forward to the next
generation of drug discovery.

13.6.6 False Hits

The concept of false hits was demonstrated elegantly by the work of the Shoichet
group, in showing that hit compounds can inhibit protein activity by pathological
mechanisms [123]. The “false hit” inhibitory mechanisms of B-lactamase inhibitors
discovered by high-throughput techniques include many aggregators, covalent
bonders, and promiscuous inhibitors. Poignantly, none of the 1274 initial hits were
found to be specific reversible inhibitors, which are pharmacologically desirable.
Meanwhile, 2 of 16 computationally derived hits were specific reversible micro-
molar inhibitors (Table 13.1). Thus, the approach of computational screens is
bolstered by the fact that they model bioactivity in an explicitly physiological
manner, whereas wet-lab systems model the physical interaction and therefore can
get sidetracked by irrelevant behavior—a behavior that could be highly dangerous
to the host [123]!

13.6.7 Finding Targets of Known Inhibition

Many drugs have no known mechanism. For many more drugs, the mechanistic basis
of side effects is not understood. Mechanisms are the deep understanding of an
interaction that enable improved design and analogy to less understood cases. They let
us understand the exceptions, such as variable response.

Target elucidation allows us to understand clinical paired disease patterns. From
observations that the opportunistic pathogen CMYV is cleared from AIDS patients
undergoing antiretroviral therapy, one might anticipate the nonspecific mechanism
of HIV-1 inhibition allowing return of immunity and nonspecific clearing of
CMV [124]. However, CD4 T-lymphocyte counts do not correlate with clear-
ance [125]. Our docking study predicts that amprenavir and indinavir target the
CMV protease specifically [110]. Our group presented a similar descriptive
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prediction for HIV-1 inhibition by the common antibiotic minocycline being
through HIV-1 integrase [8].

Moreover, we can understand the interrelation between bioactive compounds
(metabolites and drugs) and the relevant proteome through the network of
overlapping target-ligand interactions. A more recent tour de force was applied
to predict the interactions of all drugs to the human proteome. The resulting
network is a roadmap for polypharmacologic effects—Ieads and suggestions for
caution [9].

In the case for which the activity profile of a vast drug library is known for a
particular pathogen, which is becoming more common, analysis of similarly active
compounds can facilitate understanding of the targetable aspects of the pathogen.
Targets can be selected according to the profile of activity across the library [22]
(Table 13.1). Depending on the clinical indication, a target may be selected for
uniqueness of library activity relative to the host and commensal organisms, or
perhaps for similarity to targets of other diseases to maximize the chances of
discovery of an existing drug multitargeting the disease of interest.

13.6.8 Personalized Pharmacology

As the accuracy for models of protein—ligand interactions improves, along with it
comes the ability to personalize these predictions. In models of individual suscepti-
bility versus resistance, or predictions of disease progression, differences in genotype
have already been modeled with a high degree of accuracy. The most common
difference relevant to this problem is the nonsynonymous single-nucleotide mutation
or polymorphism. The change of one or more residues by mutation alters specific
contacts to increase or decrease affinity, thereby rendering the mutant organism
susceptible or resistant, respectively.

Our group designed a sequence analysis tool to predict the significance for this
type of mutation [36], but much work remains. Our group also created a group of
tools to take a patient’s HIV-1 protease and reverse transcriptase sequence muta-
tions and predict the profile of resistance versus susceptibility to the commonly
used antiretroviral medications [109,126—128], and integrated them into a freely
available web server that uses the consensus of the structural and logistic regression
techniques to select the optimal drug for HIV-1 patients (this web server has handled
over 1000 separate queries (available at http://protinfo.compbio.
washington.edu/pirspred; [37]).

Other personalization includes screening for untoward side effects, such as
inhibition of CYP450 proteins or monamine oxidases. Additionally, we differ not
only in our human genotype but also that of our symbiotic bacteria. Personalized
pharmacology may one day include identifying an E. coli strain by genotyping stool
samples, so an antibiotic regimen can be selected that will not cause imbalance to
one’s enteral flora.

Finally, dosage can be prescribed by employing models of enteral uptake using the
genes that code for microvilli intercellular junctions and models of metabolism based
on the CYP450 genes, and immunogenicity by the antibodies of memory T cells and
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mast cells. Dosage can also be prescribed by gene copy number variant, and relative
susceptibility.

13.6.9 Open-Source Drug Discovery

Through the development of robust, free, and publicly available computational
methods for drug discovery, we can increase efficiency and decrease costs for
researchers and institutions involved in drug discovery worldwide. Computational
methods have demonstrated the ability to greatly reduce the cost of hit and lead
compound discovery [6,7,30,41,123] (Table 13.1). Therefore they have the potential
to enable the development and distribution of drugs to combat diseases that
disproportionately affect impoverished nations (also known as tropical or third-
world diseases), such as malaria and dengue fever. Since tropical diseases mostly
affect the poor, the historical perspective has been that there is little to no incentive
for pharmaceutical companies to invest in the development of these drugs. None-
theless, it should be noted that some of the largest Pharma companies have more
recently devoted massive resources to join the fight against malaria, including
Novartis [22] and GlaxoSmithKline [107] (Table 13.1). In addition, from the
standpoint of computational methodology, in head-to-head comparisons the
best-performing computational methods for drug discovery are not freely available
nor publicly funded software [69,100]. Reasons for a partial shift to open publica-
tion and application of resources to minimally profitable diseases are intriguing, but
beyond the scope of this text; for now these are the exceptions rather than the rule.
The importance of reducing drug development costs through computation is
unwavering.

Although many existing tools used in drug discovery are freely available, the
skills necessary to use them and interpret the output typically require a large
amount of knowledge, which represents an obstacle to widespread use. It is rare
even for medical scientists capable of performing animal studies and clinicians
capable of performing clinical trials to possess the knowledge necessary to use
computational predictive methods. In response to these barriers, a trend to release
the identity of predicted compound-target interactions has emerged among pub-
licly funded computational research groups [6-9,30,42,43,109—111] (Table 13.1).
Moreover, the trend has been to share the outcome for initial experiments among
these leads publicly. For example, since 2000 our group has been committed to
making all of our software, ideas, and data freely available to advance the science,
and to release our predicted hit compounds in a way that maximizes impact and
availability.

In addition to making all data publicly available, it would be useful to develop an
easily accessible public web sever usable by nonscientists and scientists alike to
expedite communication of knowledge to advance the discovery of novel drugs.
Using a web server could be as simple as uploading the structure or sequence of a
single target protein or set of related target proteins. A comprehensive analysis of the
target(s) would predict inhibitors and substrates of the target(s). Antitargets with the
potential to interact with each of the lead compounds could also be identified
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and presented to the user. Potential compounds tested for activity against the target(s)
would come from a library of existing bioactive small molecules. When available,
experimental data such as ADME, bioavailability, or binding affinity could be stored
for each compound and presented to the user in a standardized way. A few open-
source drug discovery projects have begun to address these goals to promote the
discovery and development of novel therapies to neglected diseases [6,30].

13.6.10 Multitarget Design

While we have argued that the search for a compound with a desired activity can be
expedited by evaluating multitargeting compounds, we have not yet elaborated the
principle of a single compound multitargeting a single disease. This relates to the off-
target properties discussed above, according to the concept that natural compounds
and known drugs are more likely to be multitargeting. Here we extend the assertion
that compounds can be selected to target other proteins in the same disease. This
concept was perhaps first formalized by Erlich, who described a magic bullet that
would inhibit cancer by multiple mechanisms [129]. One such example is Gleevec
(i.e., imatinib, STI-571), which serendipitously targets both BCR-Abl and c-Abl,
inhibiting the two principal known causes of cell proliferation in chronic myeloge-
nous leukemia (CML [130]). Gleevec has been the most widely used treatment for
CML since 2002.

The most effective drugs in humans (e.g., aspirin, Gleevec) inevitably interact with
and bind to multiple proteins, a feature that traditional models based on single-target
drugs fail to take into account. Yet there is substantial evidence that these multitarget
compounds have a higher incidence of untoward side effects than do single-target
compounds [131]. The multitarget approach is necessary because every drug has to be
effective at its site of action (e.g., HIV-1 protease inhibitors have to bind and inhibit
the protease molecule) and readily metabolized by the body (e.g., the cytochrome
P450 enzymes, which are responsible for metabolizing the majority of drugs).
Computational screening for multitarget binding and inhibition is effective because
it exploits the evolutionary fact that protein structure is conserved much more in
nature than is function or sequence.

It is ironic and surprising that reduced affinity sometimes corresponds to higher
efficacy. This appears to be due to weak linkage of multiple target proteins within a
particular physiologic network [10]. Low-affinity multitarget drugs may perturb
networks more efficiently than high-affinity, single-hit drugs [12]. Simultaneous
effects on multiple targets can decrease the therapeutic dose, so that untoward side
effects can be handled by lower doses; simply, a compound with three targets of
similar affinity will be effective at one-third the tissue concentration. The effects of
salicylates on multiple proinflammatory signals exemplify the fact that multiple
mechanisms causing homeostatic imbalance can be targeted by a single drug; the low
effective dose facilitated by multitargeting has made aspirin one of the most popular
drugs in the world [132].

Pathogens and cancers develop resistance to single-drug therapy. Inhibitor
resistance is largely overcome in the multitargeting approach by the exponentially



EMERGING CONCEPTS 291

decreased probability of resistant mutations simultaneously arising in genes en-
coding proteins corresponding to all targets. The multitarget approach can be
extended to incorporate the variability of target proteins across a disease pathogen
population [55].

Computational predictions are obviously not perfect. The accuracy of recent
docking with dynamics and structure activity relationship predictions contain less
than 50% true positive hits at best (Table 13.1). However, if one compound is
predicted to hit multiple targets, the odds increase for actually inhibiting at least
one target. Thus we have taken the approach to target as many essential proteins
as there are crystal structures for a specific pathogen or disease [6]. The
complexity of possible multitarget effects indicate that occasionally it may be
relevant to test in whole-disease-organism screens or even animal models of
disease before evaluating which of the predicted multitarget interactions actually
occur physically.

13.6.11 Multidisease Screens and Reversing the
Disease-Drug Search

Old Western movies keep alive the iconography of “cure alls” popularized into
nostalgia by traveling salesmen of the mid nineteenth century. These tinctures were
intended to solve any medical problem, or at least a group of quite unrelated problems.
In this chapter we share some examples of single drugs that combat multiple diseases.
We also preach the repurposing of existing drugs, exploration of natural compounds,
and the use of chemical derivatives of each; that is, we continue with the concept of
exploiting existing bioavailable, nontoxic, nonimmunogenic, multitargeting com-
pounds. So it would be logical to test the ability of all these compounds to target any
and all disease targets.

Given the limited set of compounds that we propose to be used, the chance of
finding a drug for one particular disease might not be great, but with contemporary
methods the chance of finding a disease for a particular drug is extremely probable.
Multidisease screens can find the opportunities that do exist; the screening process can
drive the drug-disease selection, rather than the disease (tradition). This concept
represents a reversal of the conceptual framework underlying drug discovery, wherein
we play to our strengths. At each point of the modeling process we rely on the best
scoring instances from the scoring functions. While somewhat ambiguous instances
arise for all methods, scoring functions make it easy to know when the models are of
little or great utility. Thus, if we scan for instances for which the accuracy estimates
indicate useful models, rather than searching for the best model for one’s pet project,
we may truly access those diseases, targets, and compounds that are most realistically
modeled with existing computational methods.

Obviously computational drug discovery methods work in some cases. Obviously
computational drug discovery methods do not work in all cases. One approach to
solving this problem is to improve the methods; while that process continues, should
we not also work to find the cases for which the methods work? One captivating
feature of this paradigm shift is that it minimizes the need for improved ranking
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functions, which, as discussed above, is the part of drug modeling in which the field
has made the least progress.

The Sali group [30, 61] presented a project in which they let the available
pharmacopoeia (FDA-approved compounds in DrugBank) be the driving force to
choosing the organism and protein to target. Specifically, they started with 10 disease-
associated genomes, modeled as many of the proteins as feasible with template-based
modeling, predicted protein—ligand matches by ligand mapping from template
proteins, analogized protein—ligand matches to protein—drug matches by QSAR
analysis, and finally ran four protein—drug pairs that appeared promising and relevant;
three of the four demonstrate specific reversible binding [30] (Table 13.1). In
abstraction, the project used only the best-scoring predictions of full modeling on
a widely cast net. While the analysis already done in this work may hold other
therapeutically relevant hits or leads, it already represents evidence that bolstering
computational predictions over many possible targets can be expected to be produc-
tive if the decisions are made by the scoring functions.

13.7 SUMMARY

Incurable or untreatable diseases comprise a salient group of applications for
computational drug discovery. Etiologies for incurable diseases include pathogens
(e.g., acquired immunodeficiency syndrome, ebola, polio, human papilloma virus),
neoplasms (i.e., cancers), genetic abnormalities (e.g. Down, Creutzfeldt—Jakob, and
Proteus syndromes), autoimmunity (e.g., lupus erythematosus, asthma, multiple
sclerosis), and inappropriate response to environment (e.g., prions, type 2 diabetes
mellitus). Of those for which treatment exists, therapy manages symptoms but does
not remove recurrence of disease on cessation of treatment (e.g., treatment of AIDS).
Many life-threatening diseases have no treatment whatsoever. The motivation for
computational approaches to drug discovery is to spur the bench and clinical studies to
find cures for all diseases and alleviate human suffering. Amid these great successes in
pharmacological discovery, it is important to consider that cures exist for many
chronic and opportunistic diseases in the form of proper preventive behaviors (e.g.,
diet, exercise, hygiene), for which psychology is perhaps a more relevant solution
than pharmacology.

The opportunity addressed by computational techniques is to abstract the knowl-
edge from the many instances of physiologic interactions chronicled over the past
century, to the clinical situations that plague humanity. The links that allow these
abstractions are the genetic code, which helps us find the most relevant instances, and
the structural models which help us predict how the interactions will occur.

Our research group, the groups of Shoichet, Freire, Becker, Avery, Sali, and others,
have demonstrated the early maturity of computational modeling of protein-ligand
interactions by predicting compounds for desired pharmacological activity and
testing them in prospective experiments. These methods not only save time and
resources but are also becoming more accurate than in vitro screening meth-
ods [6,47,123] (Table 13.1).
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POSTSCRIPT

It should be noted that some authors, including ourselves, often discuss the goal of
drug discovery only in the context of inhibitors. However, pharmacological activators
are desired, particularly for nonpathogenic ailments such as depression and pain, so
all discussions of pharmacological inhibitors here and elsewhere should be under-
stood to be generalized to all pharmacologically active substances. Meanwhile,
depending on the target, it may be more difficult to design an activator (agonist)
or inhibitor (antagonist); for example, the types of contacts and similarity to the
physiologic substrate may be exploited differently by each.
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