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Abstract: Advancements in sequencing techniques place personalized genomic medicine upon the horizon, bringing 
along the responsibility of clinicians to understand the likelihood for a mutation to cause disease, and of scientists to sepa-
rate etiology from nonpathologic variability. Pathogenicity is discernable from patterns of interactions between a missense 
mutation, the surrounding protein structure, and intermolecular interactions. Physicochemical stability calculations are not 
accessible without structures, as is the case for the vast majority of human proteins, so diagnostic accuracy remains in in-
fancy. To model the effects of missense mutations on functional stability without structure, we combine novel protein se-
quence analysis algorithms to discern spatial distributions of sequence, evolutionary, and physicochemical conservation, 
through a new approach to optimize component selection. Novel components include a combinatory substitution matrix 
and two heuristic algorithms that detect positions which confer structural support to interaction interfaces. The method 
reaches 0.91 AUC in ten-fold cross-validation to predict alteration of function for 6,392 in vitro mutations. For clinical 
utility we trained the method on 7,022 disease associated missense mutations within the Online Mendelian inheritance in 
man amongst a larger randomized set. In a blinded prospective test to delineate mutations unique to 186 patients with cra-
niosynostosis from those in the 95 highly variant Coriell controls and 2000 control chromosomes, we achieved roughly 
1/3 sensitivity and perfect specificity. The component algorithms retained during machine learning constitute novel pro-
tein sequence analysis techniques to describe environments supporting neutrality or pathology of mutations. This ap-
proach to pathogenetics enables new insight into the mechanistic relationship of missense mutations to disease phenotypes 
in our patients. 

Keywords: Computational biology, protein stability, machine learning, missense mutation, nonsynonymous SNP, sequence 
analysis. 

INTRODUCTION 

 The majority of single amino acid changes that increase 
risk of clinical manifestations (e.g. developmental malforma-
tions, neoplasms, or infections) are caused by alteration of 
structural stability rather than the otherwise attractive notion 
that disease causing missense mutations directly disrupt 
ligand interactions sites (e.g. metabolite, protein, or autoge-
nous substrate) [1-3]. Wang and Moult proposed a taxonomy 
for disease causing missense mutations and deleterious ef-
fects on protein function generally as: directly effecting pro-
tein stability, ligand binding, catalysis, allosteric regulation, 
or post-translational modification [1]. Mechanisms of dis-
rupted stability are observed as the most abundant pheno-
typic missense mutations (~80%) because more residues 
contribute to structure than specific interaction interfaces 
[1,4,5]. 
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 Differences in stability are further categorized into ef-
fects on hydrogen bonds, hydrophobic exclusion, salt 
bridges, burial of charged residues, overpacking, induction 
of internal cavities, electrostatic repulsion, burial of polar 
residues, metal ion binding, disulfide bonding, backbone 
strain, and the effects of all these on multimer stability [1]. 
Many of these mutations disrupt the stability of a protein 
folding transition state. They induce a thermodynamic shift 
to decrease the proportion of properly folded gene products, 
which describes a fundamental constraint of protein evolu-
tion [6]. However, a spectrum of effects can also occur for a 
single mutation, from maintaining function at decreased 
rates, to making no difference (neutral), to gain of functions 
such as enhancing catalysis or signal propagation [7]. For 
example the functional conformation sometimes still exists 
in a smaller proportion of gene products and the physiologic 
actions of the protein remains possible. 

 Alternatively an effect on stability can maintain proper 
fold topology but produce a slightly different interface, af-
fecting interaction specificity and sensitivity as seen in 
pathogen drug resistance [8]. This effect is estimated to 
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comprise 5% of disease causal mutations in humans [1]. The 
balance of flexibility and stability across interaction sites 
controls progression of reactions by both kinetic and ther-
modynamic mechanisms. The support residues in spatial 
shells surrounding the active site are far more abundant than 
the interface residues themselves (estimated as n3/2), and 
therefore are more likely to become mutated. 

 The variance in amino acid types within the positions that 
support interface structures may enable interaction specific-
ity for a given protein family. The interface positions which 
directly contribute electrostatic interactions (electron shar-
ing) commonly maintain interaction with a family of ligands 
or facilitate a type of chemical reaction. They are highly con-
served and therefore finding them within a protein sequence 
appears tractable [9, 10]. Like hydrophobic ligand binding 
residues (guiding residues), the structural support positions 
differ from the electron sharing positions in that they are 
difficult to detect by automated residue conservation algo-
rithms. Therefore automated methods to identify phenotypic 
mutations from the larger set of nondisruptive missense mu-
tations should directly consider the conservation of spatial 
neighbors rather than just the position itself. 

Parameters of Protein Structure 

 The absence of tertiary and quaternary structure data for 
the vast majority of human proteins limits the ability to as-
sess the environment of each residue. Sequences are avail-
able for the most relevant proteins, and so protein structure 
prediction offers the possibility of ascertaining these struc-
tural parameters. 

 Templates available for comparative knowledge based 
modeling (template-based modeling) are already nearly suf-
ficient to answer this problem for proteins like those which 
have been crystallized [11, 12]. Yet the available templates 
required for consistently accurate modeling [13], might only 
present detectable similarity to 40% of the human or terres-
trial proteome [14, 15]. So it is plausible that only 40% of 
the proteome can be modeled based on structures determined 
with existing structure determination methods. Many pro-
teins seem to not be accessible to NMR or crystallography. 
For example a 4 in 5 failure rate for target proteins by the 
protein structure initiatives [16], indicates contemporary 
experimental methods for assessing protein structure may not 
be able to interrogate the remaining ~60% of protein families 
[14]. In other words, the subset of proteins in a genome for 
which we can accurately predict protein structure may be 
equivalent to the group of proteins that can be characterized 
by contemporary experimental methods. So, while structure 
prediction does offer long term utility to many other prob-
lems [17, 18], the relevance of template-based protein struc-
ture prediction to the problem of phenotypic missense muta-
tions may be limited to the time until the assessable human 
proteins are experimentally characterized. Currently only 
~40% of human mutations can currently be mapped to corre-
sponding or modeled structures [19, 20]. 

 Therefore we posit parameters of protein structure pre-
dictable from sequence as a substitute for 3D structure (terti-
ary and quaternary, experimental and predicted) in the inves-
tigation of phenoytypic missense mutations generally and 
interaction interface support residues specifically. We use 

existing sequence analytic knowledge based algorithms to 
predict secondary structure, solvent exposure, burial, disor-
der, domain restraints, and nonlocal contact prediction at 
multiple shell radii to substitute tertiary structure informa-
tion. All sequence analytic methods applied here are imple-
mented on the results from a single default PSI-BLAST run 
[21]. The structure features are predicted using the suite of 
software kindly provided to the community by Jianlin 
Cheng, selecting ab initio methods where available [22-27]. 
These methods performed as the best or near best in each 
related category of the 8th Community wide experiment on 
the critical assessment of methods for protein structure pre-
diction (CASP8) [28]. In this work we demonstrate how 
these predicted structural parameters can derive functional 
importance, thereby finessing dependence on high quality 
structural data for the problem of separating insignificant 
missense mutations from disease risk inducing mutations. 

Relation to other Methods for Predicting Phenotypic 

Missense Mutations 

Amino Acid Substitution Matrices 

 It is unclear what data set first led to the observation of a 
differentiable profile of amino acid types in disruptive mis-
sense mutations, but the work relating the genetic code to 
amino acid replacement in missense suppression seems to 
have been the groundwork [29, 30]. The probabilities of dis-
ruption for mutation of each amino acid type is now discern-
able from large datasets. For example the distribution of dis-
ruptive and silent mutations in ASEdb describes an order for 
the likelihood of disruption for mutating each amino acid: 
WYRIDNPKHQEFVMSTLC (single letter amino acid 
code), for which the first three residues stand out with re-
spect to the others [31]. Observations of trends for certain 
wild to mutant amino acid type pairs to be disruptive or per-
mitted led to substitution matrices specifically trained for 
effects on functional stability [32, 33]. However, amino acid 
substitution matrices have always been designed to estimate 
the significance of different amino acid types at the same 
position [30,34]. So all matrices can be relevant to this prob-
lem. 

 The significantly distinct substitution matrices have been 
conveniently summarized in the AAindex [35]. Additionally, 
substitution matrices created within PSI-BLAST iterations 
hold unique information as they are customized to the query 
protein [19, 36]. A substitution matrix specific to types of 
predicted structure was first applied to this problem in 
SNAP, for predicted transmembrane domains [36]. Here we 
elaborate on the concept of exploiting separable substitution 
patterns by allowing inclusion of multiple matrices specific 
to structural contexts, and posit a way to achieve balance 
between minimizing overtraining and maximizing power by 
combining multiple noncontextual matrices. 

Structural Analysis 

 A thorough discussion of the events leading to our under-
standing of destabilizing mutations is far beyond the scope of 
this paper, but brief summary informs a framework to under-
stand the logic built into the heuristic algorithms designed to 
address this problem. Analysis began with modeling the free 
energy change by adjusting side chain rotamers in known X-
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ray crystal diffraction structures [37, 38]. Estimations of free 
energy change calculated through knowledge based func-
tions does reach clinically relevant accuracy for the case of 
assessing physiologic ligand interactions such as drug resis-
tance, when enough data is available to specifically model 
the particular system [8]. 

 Structural analysis delineated the importance of the hy-
drophobic effect to this problem [39], the corollary trends for 
specific amino acid types [40], the predicted degree of solva-
tion, and types of nonlocal contacts [41]. Structural analysis 
of disruptive mutations highlighted measurable patterns, 
including distance from the active site and changes in torsion 
angles, hydrogen bonding, solvent exposed hydrophobicity, 
and stability at progressive stages of minimization simula-
tions [42]. Simply considering the quantity of each amino 
acid type within a structural shell becomes useful with ma-
chine learning [43,44], which we abstract here to the se-
quence inferred structural environment. 

 Descriptors of the structural environment can be more 
useful than direct measurements of stability, particularly in 
the case of completely modeled protein structures. In one 
algorithmic combination we applied to the CASP8 function 
prediction experiment, we employed the in silico mutation 
analysis part of our meta-functional signature protocol 
(MFS) [10]. This analysis was designed from the observation 
that unbound interaction interface residues are more unstable 
than other conserved residues, which tend to be structurally 
important [45]. Instability facilitates the thermodynamics of 
binding by compensating entropy loss with enthalpy [46]. 
However, the minimization steps used to improve the models 
remove the native instability of the interface residues! As a 
result, the MFS sequence limited analysis was more accurate 
than adding the destabilizing filter. Instead using a simple 
spatial cluster heuristic that sought other high MFS score 
residues in the vicinity enriched predictions by 24%. As a 
result our group performed as the second and third best for 
metal and ligand binding respectively [47]. Our observations 
that heuristics can outperform structural measurements and 
the successful designs of MUpro [44] and SNAP [36] sug-
gest that many of the structure analytic techniques may be 
extended through sequence analysis, allaying the need to 
build full structural models. 

Sequence Analysis 

 As mentioned above, conservation detects residues that 
facilitate structural integrity or direct interactions. The earli-
est sequence based public tools attempted to jointly model 
structural context and conservation. Conservation was com-
bined with position-specific scoring matrices (with Dirichlet 
priors) by SIFT [48]. Conservation was also combined with 
measurements of the structural environment within com-
pletely modeled structures by SNPs3D [1]. 

 Expanding the philosophical basis of analysis beyond 
conservation within the contemporary snapshot of evolution 
improves accuracy. Modeling physicochemical conservation 
by deviation of six physical parameters from ortholog align-
ment position alone is complimentary to standard sequence 
analysis [49]. Modeling positive selection through DNA se-
quence [50] or phylogenetic branch deviation [51] are two 
examples of more directly evolutionary approaches. We of-

fer a third here, similar to branch deviation but instead ana-
lyzing only the proportion of state changes to branch points, 
or steps (SSR) [10]. 

 Annotation mapping [36,44] and text mining [52] are 
nontrivial tasks which directly make use of the exponentially 
growing scientific information base. These data mining tools 
have the capacity to add subtly relevant evidence, not acces-
sible through traditional protein sequence informatics. The 
difficulty of accurate automated mapping of mutation sites to 
protein structures is familiar to anyone who has read a pro-
tein structure file, but seems to have been solved by two 
groups [19, 20]. 

 Subdivision of proteins in superfamily or functional type 
was found to be useful, perhaps by improving the context of 
algorithmic learning [53]. Portability of methods learning 
from bench experimental data was shown to be enhanced 
greatly by including the experimental temperature and pH 
[44], which could be fruitful for application of these methods 
to specific in vivo tissues and organisms. 

 The profile of amino acids contained within a sequential 
residue window (sliding window) becomes highly useful 
with machine learning [38]. This amino acid context was 
found to maintain significance considering only three posi-
tions before and after the residue [44]. Fragment analysis 
was further extended by modeling transitional frequencies 
within matching three residue fragments from a sequence 
database [36]. 

 Application of machine learning techniques approxi-
mately followed the order in which they were developed. 
Simple decision trees combined structure and sequence 
measurements [54]. Neural networks and support vector ma-
chines facilitated combination of many parameters [55, 56]. 
Hidden Markov models enabled modeling of complex chain 
relationships, creating perhaps the best approach to model 
gain of function mutations [57]. 

Sequence Inferred Structural Analysis 

 All other improvements of sequences analysis have come 
from inference of structure. Early systematic analyses for 
both structure and sequence features revealed the utility of 
the following predictable features: solvent accessibility and 
disorder (B-factor) [58]; and specific involvement hydrogen 
bonds, salt bridges, metal ion binding, disulfide bonding, and 
multimer interface [1]. Considering the predicted solvation 
in concert with other component algorithms specifically was 
found to improve predictions [36]. Secondary structure [55], 
changes in predicted secondary structure upon mutation, and 
transmembrane locality have also been found to effect pat-
terns in fragility [36]. 

 Nonsystematic approaches to template based modeling 
were useful as soon as protein structure prediction became 
accurate [59]. The quality of the predicted model obviously 
effects the ability to draw meaningful inference. Sequence 
similarity between query protein and template structure helps 
to estimate applicability to this problem, estimated as be-
tween 40% and 60% [2, 3]. Model quality assessment now 
far surpasses the accuracy of sequence similarity [60], so 
these measurements need to be redone, albeit with considera-
tion that much can be derived from low resolution models 
with accurate topology. 
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 Here we continue the exploration of sequence inferred 
structural inferences of potentially destabilizing mutations. 

METHODS 

 For a given protein sequence, the residues and their de-
gree of functional importance can be thought of as a signa-
ture representing the function of the protein. We previously 
developed a combination of knowledge- and biophysics-
based function prediction techniques to elucidate the rela-
tionships between the structural and functional roles of indi-
vidual protein residues [10]. Such a meta-functional signa-
ture (MFS) may be used to study proteins of known function 
in greater detail and to aid experimental characterization of 
proteins of unknown function [10]. 

 Here we extend the MFS philosophy to evaluate the con-
tribution of residues to functional, structural, or interactive 
stability by amino acid type, amino acid substitution, func-
tional importance scores based on multiple sequence align-
ments, structural features, and the scores of residues pre-
dicted to be nearby in 3D space (nonlocal contacts). We use 
backwards stepwise multiple regression to remove score 
types that do not add weight to the predictions with statistical 
significance, i.e. include all scores then remove one at a time 
with cycles of training by logistic regression until all add 
significant improvement on the training set. We employ su-
pervised learning only by forcing the maintenance of all 
amino acid types, as a base from which to improve. We then 
train a support vector machine (SVM) on the resultant set of 
score types, as this training approach creates hyperplanes 
between combinations of score types to refine accuracy, in-
stead of the single best fit polynomial line of logistic regres-
sion. In training, an SVM will attempt to draw curved lines 
between scores from different algorithms and derivable fea-
tures thereof, and even enclosing circles for clusters of data-
points. The resulting model yields a continuous spectrum of 
thresholds with corresponding specificity and sensitivity 
which the user can balance as appropriate to the particular 
application. 

 Note: we use the marker [Novel] to denote new software 
or algorithmic changes presented here. 

Protein Sequence Analysis Using Multiple Sequence 

Alignments 

 We use the position specific iterative basic local align-
ment search tool (PSI-BLAST) [21] to find similar protein 
sequences from the non-redundant database [61]. More sen-
sitive and specific methods have emerged, such as the con-
text sensitive iterative BLAST (CSI-BLAST) [62], HMM-
HMM predictive comparison method (HHpred) [63], and 
PSI-BLAST intermediate sequence search (PSI-BLAST-ISS) 
[64], which are reviewed by us previously [65]. While PSI-
BLAST results have inherent limitations of sensitivity com-
pared to these newer tools, we do overcome the specificity 
problem in part by applying the multiple sequence compari-
son by log-expectation algorithm (MUSCLE) [66] to the 
PSI-BLAST output, and keep the top 250 nearest neighbors 
in the resulting multiple sequence alignment (MSA). 

 For each protein we use a single pass of PSI-BLAST and 
MUSCLE calculations (each with multiple internal itera-
tions: 3 for PSI-BLAST, and the default selection of MUS-

CLE) to drive the entire prediction pipeline. Each of the fol-
lowing algorithms calculates functional importance given 
this single MSA. 

HMMRE 

 We train a hidden Markov model (HMM) from the MSA 
using the Hmmer package [67], then compare emission fre-
quency estimates from the model with the amino acid back-
ground frequency in nature, given by karlin.c of the BLAST 
program package [21], to produce the HMM relative entropy 
score for each amino acid position [10,68]. [Novel] Here we 
make a significant change by constraining the Markov chain 
architecture to the form of protein sequence, rather than us-
ing the chain apparent from conservation measured across 
the entire MSA. 

SSR 

 We model the evolutionary context of each position by 
creating a maximum parsimony phylogenetic tree for the 
surrounding sequence of each position using the PHYLIP 
platform [69]. Each protein in the MSA is considered as a 
leaf in the tree, and the root represents the theoretical ances-
tral sequence. We quantify the evolutionary divergence of 
the position by taking the ratio of different amino acid states 
appearing at the particular position, to the total number of 
step changes in the modeled evolution between the input and 
ancestral protein within the phylogenetic tree, termed the 
state to step ratio (SSR) [10]. 

MAPP 

 The multivariate analysis of protein polymorphisms algo-
rithm (MAPP) uses an MSA of protein sequence orthologs 
(the matching protein in another species) to estimate a mean 
for each of six physicochemical values for each position 
(MSA column) [49]. For each physicochemical value, devia-
tion from the mean is calculated for all twenty amino acids, 
and a single composite value is generated by a center of mass 
calculation on a principal component transformation, 
wherein each physicochemical property is taken as a coordi-
nate axis. Then the Euclidean distance of each amino acid 
from this center of mass composite value is taken to estimate 
the effect of a mutation at that position [49]. 

Str from Seq 

 We employ sequence based predictions of structural fea-
tures including secondary structure, level of solvent expo-
sure, disorder, disulfide bonds, domain breaks, and nonlocal 
contacts. All of these structural features are predicted using 
the suite of software kindly provided to the community by 
the Jianlin Cheng group [22-27]. 

CloseSS - [Novel] 

 Protein residues come together in 3D space to form func-
tional sites. We have created a method to consider the prob-
ability of concordant function for a residue one through five 
positions away, related to the secondary structure predicted 
for the evaluated position. For example, side chains in the 
n+2 position of an extended beta strand will tend to be 
nearby the considered position (n), as will the side chains of 
n+3 and n+4 for an alpha helix. 
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Shells - [Novel] 

 We hypothesize that many modelable features of the 
structural environment affect the stability of a position. We 
use nonlocal sequence contact prediction to select residues 
more than 5 positions away, as those that can contribute to 
the 3D environment of each position. Algorithms from the 
Jianlin Cheng group are separately trained for nonlocal con-
tact prediction at distances of 0-8Å or 0-12Å. We use these 
methods to resolve virtual concentric contact shells at 0-8Å, 
0-12Å, and 8-12Å. Within each shell we measure the count 
of amino acid types, the mean and distribution of HMMRE 
conservation scores, the probability of the nonlocal contact 
prediction, and the simple number of contacts. We thereby 
dissect contact shells by progressively indirect effects on 
stability. The philosophy underlying this method arises from 
detailed analysis on the patterns of interresidue distances on 
stability, wherein patterns of <8Å contacts vary considerably 
from those further out [70]. 

Fxn from Str 

 This term refers to the combination of the novel methods 
CloseSS and Shells with predictions of structural features 
(Str from Seq). 

Sequence Independent Algorithms 

Matrices - [Novel] 

 We train a simple look up table by considering the 94 
matrices curated into the AAindex database [35] in our re-
gression protocol. All matrices kept after the reverse step-
wise logistic regression steps are combined into a single ma-
trix using the regression coefficients for weights. This ap-
proach decreases overtraining common to matrices derived 
directly from the training set data. Predictions for mutation 
types disproportionately abundant or absent in the training 
set are rectified by the analyses and data sets used to build 
into each component matrix. We also separately consider the 
similarity matrix produced within the last PSI-BLAST itera-
tion as described in SNPs3D [19], and the position inde-
pendent matrix as described in SNAP [36]. 

Machine Learning Techniques 

Logistic Regression 

 The simplest approach to combining float point predic-
tions is regression. Linear or logistic regression often do not 
display significant differences in performance in protein in-
formatics, as for this problem (data not shown). 

Reverse Stepwise Logistic Regression 

 To improve the signal to noise ratio we evoke the reverse 
stepwise approach to removing component algorithm predic-
tions. Forward regression adds one component at a time until 
the significance of an added component is lost. When con-
sidering many components the search is either over inclusive 
or non-exhaustive, depending upon the significance thresh-
old (many components combinations are never considered). 
By reversal of the search direction, overly similar predictions 
are prioritized for removal. Stepwise single component re-
moval allows the most significant of the similar algorithms 
to be retained. Any inclusive combination of algorithms can 

be considered, while maintaining highly stringent signifi-
cance requirements. The component set selected by the for-
ward approach varies depending upon the order of inclusion. 
The tractable search of the reverse direction is deterministic, 
which is valuable for testing hypotheses in informatics ex-
periments. To avoid overtraining we do not consider reentry. 
We use the removal statistic (P-value > 0.001), which de-
scribes the probability of observing the component data 
when unrelated to the neutral or deleterious condition. 

Support Vector Machine 

 The two most popular machine learning techniques in 
protein informatics are neural networks and support vector 
machines (SVM) [71, 72]. Neural networks create exhaustive 
regressions between all possible combinations of the compo-
nent set, where the number of components to be combined is 
defined by the operator determined number of hidden layer 
nodes. SVM vectors are not limited to the same amount of 
components. SVM solves maximal separation between com-
binations of components through multiple hyperplane vec-
tors. The hyperplanes can be solved using Lagrange multi-
pliers, thus enabling complex inferred relationships, for ex-
ample separating case from control with circles instead of 
lines. We selected the radial basis kernel function (RBF), 
because it can match the behavior of linear or sigmoid kernel 
functions with parameter training [73, 74], and the polyno-
mial kernel function has more hyperplane parameters and 
thus is more likely to be over-trained. We train the RBF pa-
rameters by internal ten fold cross validation grid searches 
(possible values for cost 1-10 and gamma 0-5), within each 
of the ten training samples (cross within cross). In other 
words the cost and gamma values were trained for each cross 
validation set, and the training involved subdivision of the 
subset. For the final score we use the decision probability 
estimate [75]. Finally, we checked for specific effects of the 
software by using multiple SVM packages: libsvm [76], 
svmvia [77], and svmlight [78]. 

Experiment Data Sets 

In Vitro Set 

 We use the in vitro deleterious point mutation standard 
benchmarking set assembled by the creators of SIFT [48]. 
Although the assay values from the original papers were 
binned into four categories, we use a binary approach as a 
more rigorous test of whether our algorithms can discern any 
measurable effect on protein function. The set is comprised 
by the ability for 336 point mutations in HIV-1 protease to 
maintain Gag-Pol precursor cleavage [79], 2,015 mutations 
in Bacteriophage T4 lysozyme to maintain plaque formation 
when exposed to Salmonella typhimurium [80], and 4,044 in 
Escherichia coli LacI repressor to maintain repression of the 
Lac operon in the absence of allolactose (or IPTG) and re-
lease in its presence [81]. Other high quality in vitro data sets 
not used here include Protherm [82] and ASEdb [83]. 

Clinical Set 

 The online Mendelian inheritance in man of the National 
Library of Medicine at the National Institutes of Health 
(OMIM) [84] registers 7,022 missense mutations as etiologic 
or a contributory risk factor to disease, while 35,434 more 
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human nsSNPs have been described in the literature and cu-
rated by the Protein mutation database [85] but are not 
clearly delineated for effect in patients. As the clinicians and 
scientists who generated the instances within the PMD muta-
tion set focus on identifying difference rather than similarity, 
we assume the latter list to be skewed significantly towards 
disease causing mutations relative to a hypothetical set 
wherein clinical and bench data would be collected for a 
random distribution of proteins and patients. With limited 
sequence characterization resources, scientists interrogate 
genes likely to cause problems in their patients, cells, or pro-
teins. Meanwhile, those mutations for which the data do not 
demonstrate linkage, could disrupt function in ways not 
measured by the particular experiment. So reliable true posi-
tives exist, but true negatives do not. [Novel] Thus we cre-
ated a negative set necessary to train our knowledge based 
function, reproducing the distribution that would be pro-
duced by random single SNPs at random positions, matching 
the abundance of nsSNPs for each protein in the PMD (e.g. if 
5 are demonstrated in protein X, we create 5 in X). 

Craniosynostosis Data Sets 

 The only true test of a method is prospective verification. 
Our collaborators sequenced 27 genes in a set of 186 patients 
with single suture craniosynostosis, and the 95 highly variant 
Coriell controls. Seventy eight missense mutations were 
found, of which 49 were novel and unique to the patients. 
They genotyped these novel 49 missense mutations in 2000 
control chromosomes, resulting in 15 unique novel mutations 
which are taken here as potentially causal mutations [86]. 
Patients were collected based on primary diagnosis, through 
a network of four craniofacial centers in Children's Hospitals 
within the United States. Twenty-seven candidate genes 
were chosen on the basis of involvement with syndromic 
craniosynostosis and/or suture development [86]. Although 
further work remains to delineate relation and causality, the 
fifteen cases are taken as causal for our purposes here. 

Prospective Clinical Test 

 We prospectively tested a group of algorithms on the set 
of 78 missense mutations observed in patients. We were 
blinded to assignment of the mutations to case or control, 
including whether a mutation was seen in multiple patients, 
or whether multiple mutations were seen in an individual 
patient. We predicted disease causality as at least three 
scores above predetermined thresholds for any of MFS, 
HMMRE, SSR, SIFT, PMUT, MAPP, or PAM250. Thresh-
olds were taken from the related publications for SIFT, 
PMUT, and MAPP. Those for MFS, HMMRE, and SSR 
were taken from previous observations of functional impor-
tance in other proteins. Positive scores were used for 
PAM250. 

Retrospective Clinical Test 

 The prospective test design skews for noncausal muta-
tions, as more mutations known to cause craniosynostosis or 
syndromes with craniosynostosis were present in the set than 
other previously observed mutations. As well, presentation 
of the set predated completion of the HUSCY methods pre-
sented here. Thus we considered a second set of all 105 mu-
tations found in patients with craniosynostosis or controls  
 

seen in the craniofacial center at Seattle Children's over 
roughly fifteen years [86]. The thirty cases were all charac-
terized elsewhere to be causative mutations. We removed the 
mutations present in the OMIM database to create a blinded 
validation scenario in which these mutations are hypotheti-
cally not known, and retrained the HUSCY algorithm for this 
retrospective test. 

Evaluation Methods 

Ten Fold Cross Validation 

 A knowledge based (informatic) algorithm assessment 
protocol wherein the training set is used for testing. The 
training set is divided randomly into ten equivalent subsets, 
each of ten versions of the algorithm is trained on the re-
maining 90% subset and assessed for accuracy based on pre-
dictions for the 10% subset. 

ROC 

 The receiver operator characteristic (ROC) displays the 
balance of specificity and sensitivity across the range of pos-
sible score thresholds for deciding what predictions are posi-
tive versus negative [87]. This plot is valuable in enabling 
critical assessment of weaknesses of a method, demonstrat-
ing where method accuracies are separable, and in informing 
selection of a cutoff threshold appropriate to the particular 
application. 

AUC 

 Accuracy across the range of score thresholds is summa-
rized by measuring the area under the ROC curve (AUC), for 
which 50% is equivalent to random expectation and 100% is 
perfect prediction. To estimate AUC from the data, we em-
ploy the rectangular method (draw nonoverlapping rectan-
gles down from the ROC data points), which tends to under-
estimate; we prefer this over the trapezoidal approach which 
can overestimate in some instances. 

Two State Accuracy 

 A single value that describes total accurate predictions is 
useful to describe total predictive ability for a particular 
threshold or machine learning output. Two state accuracy is 
calculated as the fraction of correct predictions (positive or 
negative cases). 

RESULTS AND DISCUSSION 

Performance of Novel Algorithms to Predict Functional 

Disruption by Artificial Missense Mutations in the  
Standard In Vitro Mutation Test Set 

 The receiver operator characteristic in Fig. (1) demon-
strates performance of the five algorithms separately. Each 
algorithm performs 1.4 - 2 times better than only considering 
amino acid type (AUC=61.9). HMMRE is most accurate 
(AUC=73.2) except in high specificity cases, for which SSR 
displays higher sensitivity. Correlations between the predic-
tions for each pair of these methods are sufficiently low to 
motivate combination see Fig. (1B). Thus we have collected 
and created a novel set of tools useful for protein sequence 
analysis. 
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Fig. (1). New methods for prediction of mutational disruption. 
Methods assessing conservation (HMMRE, SSR), sequence derived 
structural patterns (Shells, CloseSS), and a combinatory amino acid 
substitution matrix (Matrices) are novely applied to the problem of 
predicting functional disruption by artificial missense mutations in 
the standard in vitro mutation test set assembled by the creators of 
SIFT [48]. This set is comprised by in vitro assay results for 336 
mutations in HIV protease [79], 2015 in Bacteriophage T4 
lysozyme [80], and 4044 in the E coli Lac repressor [81]. Parame-
ters are trained for Shells (AUC=69.1), Matrices (AUC=67.4), 
CloseSS (AUC=68.3), and AA type (AUC=61.9). (A) The receiver 
operator characteristic of the five algorithms in ten fold cross vali-
dation (* indicates novel algorithms). Each algorithm performs 
better than random (Reference line) in all cases, each between 1.4-2 
times more accurate than only considering amino acid type. 
HMMRE is most accurate (AUC=73.2) except in high specificity 
cases, for which SSR (AUC=66.5) performs better. (B) Low corre-
lation between predictions of the different algorithms indicates 
additive predictive ability can be achieved by combination see Fig. 
(2). 

Additive Prediction Value from Combining Novel  
Algorithms 

 Sequential regression combination demonstrates separa-
ble improvements for sequence derived parameters of struc-
ture and function Fig. (2). 

 Addition of structure parameter predictions to MFS 
(AUC=76.9) adds some predictive ability (AUC=78.2). In-
cluding the heuristic algorithms derived solely from these 
structural features (Shells and CloseSS) does add 5-10% 
sensitivity below 85% specificity (AUC=80.7, see Fig. 2). 
Combination of predicted structural features with predicted 
function from predicted structural features, reaches accuracy 

comparable to MFS trained on this set, yet the structure from 
function algorithms do not directly include the conservation 
of the residue nor the amino acid type (Fxn from Str, 
AUC=76.3). The MFS StrFxn combination represents the 
total structure and functional importance of the residue in 
maintaining protein function (AUC=80.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Additive prediction value of combining novel algorithms. 
The philosophical derivation of predictive algorithms demonstrates 
separable improvements for combining sequence derived parame-
ters of structure and function. Predicted structural features (Str from 
Seq, AUC=70.1) include disorder, secondary structure, solvation, 
contribution to disulfide bonds, and domain break points. Adding in 
predicted function from predicted structure (Fxn from Str, 
AUC=76.3) includes the Shells and CloseSS methods. Regression 
combination of HMMRE and SSR conservation methods and amino 
acid type is synoymous to our approach to predict residues with 
direct functional contribution measured by contacts with any inter-
acting molecule [10], but here instead we consider functional con-
tribution as positions for which mutations will disrupt protein func-
tion (MFS, AUC=76.9). Combining MFS with Str from Seq adds 
improvement (MFS Str, AUC=78.2). More sensitivity is added 
when adding the Fxn from Str algorithms (MFS StrFxn, 
AUC=80.7) which use only data already present in MFS Str, sug-
gesting that the model of the structural environment by this se-
quence based algorithm is significant. Finally including the substi-
tution matrices into the regression increases predictive ability (MFS 
StrFxn Matrix, AUC=83.2). 
 
 The Matrices combination models the importance of the 
particular wild type to mutation amino acid type. Adding this 
feature to MFS StrFxn increases sensitivity dramatically for 
specificities above 85% (AUC=83.2). 

Amino Acid Substitution Scoring Matrix 

 It is easy to train a substitution matrix to a particular data 
set, but such a matrix tends to not be robust to situations out-
side of the data set. By combining the matrices of the AAin-
dex database [35] which do not necessitate extraneous struc-
tural features (e.g. solvation and secondary structure) we 
build upon the diversity of the set and the power of the 
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analyses used to build each of them see Fig. (1) Supplemen-
tal Fig. (1). 

 The mutations that result in aspartic acid or tryptophan 
uniformly disrupt function, yet there are only a few of each 
in the standard in vitro set see Supplemental Fig. (2). As 
such these mutations do not hold the strongest scores in our 
matrix. None of the mutation types with uniform disruptive 
or neutral effects result in the strongest or weakest mutation 
scores, which is suggestive of not overtraining. The approach 
implicitly favors those mutation types with favorable power 
calculations. Thus Matrices derives scores for mutations sel-
dom observed in the training set from the analyses used to 
build the other matrices, using weights trained on abundant 
mutation types. 

 Evidence of robustness is found in superior performance 
of application to the clinical data set as compared to other 
contemporarily popular and historically important matrices 
see Supplemental Fig. (3). 

Improved Prediction Using Less Information During 

Machine Learning 

 Employing reverse stepwise logistic regression as a sam-
ple preparation technique to decrease information greatly 
improves support vector machine training see Fig. (3). Re-
verse stepwise logistic regression removed noisy data types 
but did not significantly alter prediction outcomes 
(AUC=83.25), as compared to simple logistic regression 
(AUC=83.22). Application of the exact same support vector 
machine training protocol see Fig. (3) and even the same 
gamma and cost function values (data not shown), results in 
substantially improved predictive ability by support vector 
machine predictions (AUC=90.6 versus 83.8). While obvi-
ously indicating that noise gets in the way of signal, the dif-
ference also suggests valuable algorithmic combinations not 
intentionally designed by us. For example the SVM models 
connect the predicted degree of solvation and nonlocal algo-
rithmic components [41], and proline as the mutant amino 
acid to alpha helix predicted for wild type [36]. Neural net-
works will be employed in future work to further disentangle 
these algorithmic improvements. 

 Rendering the support vector machine regularization path 
shows gradual slopes for changes in the kernel parameters 
cost (penalty) and gamma (exponent coefficient) to produce 
stable accuracy in the regions from which the values were 
derived see Supplemental Fig. (4). The ten fold cross valida-
tion sets resolved to cost values 4±1 and gamma 1.5±0.5. As 
expected, steep slopes are found for cost below 1.0. No sig-
nificant differences were found from training with different 
support vector machine programs (SVMlight, libSVM, 
SVMvia; data not shown). 

 The novel learning approach applied to the clinical data 
set also reaches sensitivity to specificity combinations not 
attained by logistic regression, which appropriately favor the 
4.5x abundant neutral instances see Fig. (6A). The reverse 
stepwise logistic regression into support vector machine ap-
proach is generally novel to bioinformatics, creating perhaps 
the first example of improved performance of internal cross 
validation by avoiding overtraining. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (3). Improved prediction using less information; a novel ap-
proach to machine learning. Machine learning techniques address 
the challenge of combining predictive scores from unique individ-
ual algorithms into a unified prediction. Previous approaches to 
data type selection in protein informatics assume to combine all 
available data or follow an expert's intuition. We demonstrate that 
employing a sample preparation technique to decrease information 
greatly improves the predictions of a more complex machine learn-
ing method. For the preparation technique we employ reverse step-
wise logistic regression (Rev Step LogR), which removes data 
types but does not significantly alter prediction outcomes. The blue 
markers demonstrate extremely similar accuracy profiles of logistic 
regression, before (AUC=83.22) and after (AUC=83.25) filtering 
insignificantly contributing information types with Rev Step LogR. 
The green line depicts accuracy of support vector machine (SVM) 
training without Rev Step LogR filtration steps (AUC=83.8). The 
red line shows the exact same SVM method applied after filtration 
(AUC=90.6), demonstrating far better specificity and sensitivity 
than reached when including all data types. The Rev Step LogR 
SVM (referred to as HUSCY in later figures) depiction highlights 
that the approach is generally novel to bioinformatics, creating per-
haps the first example of improved performance of internal cross 
validation by avoiding overtraining. 

Novel Predictors of Structural and Functional  
Importance 

 Improvements in protein sequence analysis can be in-
formed by the set of algorthms and parameters thereof which 
were consistently retained during reverse stepwise logistic 
regression training across ten fold cross validation in both 
the standard in vitro mutation set and the clinical mutation 
set (see Table 1). The conservation methods include 
HMMRE, SSR, and MAPP, which suggests meaningful dif-
ferences between the respective philosophical bases of con-
temporary sequence, evolutionary, and physicochemical con-
servation. The profile of specific amino acid types predicted 
to occur within nonlocal contact shells describe neutral and
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Fig. (4). Comparison to other methods for missense mutation phenotype prediction. Comparison of performance on the standard in vitro 
dataset for HUSCY (Rev Step LogR SVM in Fig. 3) to approaches previously published in the field: SNAP [36], SIFT [48], PolyPhen, [88], 
PMUT [55], and MAPP [49]. PMUT was designed to predict human mutations, not the microbial systems assessed here. Other methods in-
cluding SIFT, SNAP, PMUT, and PolyPhen were not trained on this specific data set, and thus would not be anticipated to perform as well. 
Nonetheless the set is used to standardize comparison for the methods. Performance for PolyPhen taken from the SNAP paper. (A) ROC ac-
curacy profiles. (B) Two state accuracy separated by the three protein reporter systems comprising the standard set. HUSCY and SNAP 
methods perform stably across the three proteins. These data demonstrate a contribution to the field of characterizing mechanisms of protein 
function on the stringent test of picking out single mutations that produce any experimentally measurable change in the assayed functions. 
 

deleterious environments. For example prediction of nonlo-
cal prolines, alanines, or serines to be within 8Å of a muta-
tion increases the probability of altering function. Meanwhile 
the presence of histidines within any measured contact shell 
is protective for maintenance of protein function (see Table 
1). The hypothesized patterns derived from patterns of side 
chain three dimensional proximity appeared exactly in the 
retained positions: two and four away within beta strands, 
three and four away in alpha helices, and three away in ran-
dom coil. 

 The variance (standard deviation) of HMMRE conserva-
tion across residues predicted to be within the 8Å nonlocal 
contact shell was a positive predictor, as was the probability 
of those residues being within the nonlocal contact shell, and 
solvation or the total number of residues predicted to be in 

the shell. Meanwhile higher averages of HMMRE conserva-
tion for these residues were predictive of neutral mutation 
effects (see Table 1). These observations together imply that 
for positions not picked up by the substitution matrix or the 
conservation scores of the residue itself, those mutations 
directly within the flexible functional site tend to be toler-
ated, while it is more generally deleterious to mutate residues 
occurring between functional sites and the rest of the protein. 
Thus our model appears to have caught the subtle effects of 
interface support residues. 

Comparison to other Methods for Missense Mutation 

Phenotype Prediction 

 From here forth we will use the term HUSCY to refer to 
the model resulting from the reverse stepwise logistic regres-
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Fig. (5). Accuracy profile for prediction of deleterious effects by mutations in Lac Repressor. The two state prediction accuracy of HUSCY 
(left), and SIFT (right) [48] for all 12 or 13 mutations at each position (of 4044 in E coli Lac repressor) [81], mapped onto the homodimer 
structure of LacRepressor bound to the operator DNA (PDBid 1lbg). Side chains built by SCWRL4 [96] are shown for all 328 residues for 
which mutations were made, colored as heat map from blue for perfect selection to red for no correct selections. Main chains colored to dif-
ferentiate homodimer chains. DNA shown as simplified ellipsoids in 5'-3' rainbow map. Two state accuracy includes correct prediction of 
either deleterious effects or no effects. Residues with <50% accuracy by HUSCY are shown as ball and stick in both renderings. The residues 
for which HUSCY displays poor performance are clustered at the protein homodimer interface and the allolactose binding site. Future im-
provements are directed by this analysis to include terms for interaction interface prediction. Clearly we already achieve our goal of accurate 
prediction for the interface support residues, bringing forward the field of sequence based prediction of destabilizing mutations. 
 

sion into the support vector machine. The HUSCY method 
achieves far greater accuracy (AUC=90.6) than previous 
efforts to train on the in vitro dataset, e.g. MAPP 
(AUC=57.2; see Fig. 4) [49]. 

 This set has been used in previous work multiple times to 
standardize comparison. Thus we also compare performance 
to other methods designed to predict disruption of missense 
mutations: SIFT [48], SNAP [36], PolyPhen [88], and 
PMUT (designed for human not in vitro systems; AUC= 
62.7; see Fig. 4) [55]. Conclusions based on comparison to 
this latter set should be drawn cautiously. The HUSCY 
method holds as the best performing upon dissection by the 
three proteins which comprise the standard set see Fig. (4B). 
SNAP and the HUSCY methods maintain significant accu-
racy across each of the three proteins. 

 These data demonstrate a contribution to the field of 
characterizing mechanisms of protein function by reproduc-
ing bench point mutations with high accuracy, on the strin-

gent test of picking out single mutations that produce any 
experimentally measurable change in the assayed functions. 

Three Dimensional Profile of Prediction Accuracy for  

Mutations in LacRepressor 

 We conceived a novel graphic design to display trends in 
performance across a protein to inform future improvement 
and comparison of the prediction algorithms see Fig. (5). 
Patterns in performance are communicated by the distribu-
tion of amino acid side chains colored according to the two 
state prediction accuracy. The small multiple (parallel figure 
construction) draws attention to the difference in two state 
accuracy between HUSCY and SIFT for intermolecular in-
teraction residues and the support residues thereof see Fig. 
(5) albeit taking attention away from the excellent perform-
ance for peripheral mutations by both methods. Comparison 
to SNAP draws attention to the buried residues and interac-
tion support residues which are more accurate for HUSCY 
see Supplemental Fig. (5) while both accurately predict the 
DNA interface. Similar side chain depiction for the 19 resi-
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Fig. (6). Prediction of disease related nonsynonymous SNPs in OMIM. (A) Receiver operating characteristic for selection of the 7,022 non-
synonymous SNPs recognized by the Online Mendelian inheritance in man (OMIM) [84] as contributory to human disease versus a negative 
control set of 31,698 randomly generated nonsynonymous SNPs we created to match the distribution of occurrence to all those observed in 
patients (PMD human in vivo subset) [85]. Predictive ability is gained from training the combination on this data set in ten fold cross valida-
tion. It might be surprising from the figure that HUSCY reaches an two state accuracy of 85% (98.5% specificity, 17.5% sensitivity; 
AUC=67.7), but there are 4.5 times more neutral instances than deleterious cases. This prediction value of 70% above random for clinical 
data has not been achieved previously. Rev Step LogR results in consistent selection of parameters across the ten derivations, which suggests 
stability of the algorithm (AUC=71.9). The HUSCY method trained on the standard in vitro set (InVitro, AUC=58.7) does not perform as 
well as simply considering the amino acid type (AUC=61.9), which highlights the difference in these problems (discussed in Results). Further 
disclosures for this data set include: passive nonsynonymous SNPs in humans are not yet known and so are modeled here, therefore many of 
the instances taken as negative would actually effect function as positives; many of the positive instances have not been thoroughly evaluated, 
e.g. in multiple prospectively studied populations. (B) We trained a specific amino acid substitution scoring matrix to select disease related 
nonsynonymous SNPs (gray circles in (A), AUC=67.8) as a combination of those in the AAindex database [35] which do not require other 
features such as secondary structure or solvation. The matrix demonstrates marginally higher accuracy than a sophisticated conservation 
measure trained for this purpose (MFS; green line in (A), AUC=67.0). Higher values are predictive of disease relation. Coloring is presented 
as a heat map, with red representing stronger predictions of disease and green representing minimal chance of causing disease. Only the muta-
tions possible from a single nucleotide change are shown (i.e. nonsynonymous SNPs). The matrix values converge to two significant figures 
across the ten cross validation training sets. This matrix can be applied instantaneously as a simple look up table for clinicians not familiar 
with protein informatics. 
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Table 1. Novel Predictors Consistently Retained in Reverse Stepwise Logistic Regression 

Positive Predictors  

1. Conservation methods HMMRE, SSR, MAPP 

2. CloseSS conservation, -helix position 3, 4 

3. CloseSS conservation, -extended position 2, 4 

4. CloseSS conservation, random coil position 3 

5. Quantity of residues within the 0-8Å shell ALA, PRO, SER 

6.Quantity of residues within the 0-12Å shell CYS, GLY, TRP 

7. Quantity of residues within the 8-12Å shell CYS, GLU, GLY 

8. Quantity of neighbors within 0-12Å shell  

9. Standard deviation of the HMMRE conservation within 0-12Å shell  

10. Standard dev of product of HMMRE conservation and probability of being in 0-8Å shell  

11. Degree of solvation  

Negative Predictors  

1. Quantity of residues within the 0-8Å shell CYS, GLU, HIS, ASN 

2. Quantity of residues within the 0-12Å shell HIS, ARG 

3. Quantity of residues within the 8-12Å shell HIS, MET 

4. Mean HMMRE conservation within 0-8Å shell  

5. Quantity of disulfide bonds within 0-8Å shell  

 

dues on which HUSCY performs worse than random (<50%) 
shows better performance for a few by each of the other two 
methods, suggesting that this information can be captured. 

 The HUSCY depiction viewed alone highlights the clus-
ter of inaccurate predictions at the distal homodimer inter-
face and the allolactose binding site, and a minimum per 
residue accuracy of 25% (n=1; see Fig. 5). The graphic de-
sign clearly demonstrates that we reached our goal to predict 
mutation effects for interface support residues. Simultane-
ously the clustering of non blue residues informs future work 
to interface residues perhaps by incorporating interface pre-
diction as a specific pretrained parameter. 

Prediction of Disease Related Missense Mutations in 
OMIM. 

 We retrained the entire HUSCY approach on the problem 
of selecting clinically phenotypic missense mutations. Al-
though this clinical data set is far from ideal as described in 
Methods, our algorithms and machine learning approach 
demonstrate sequentially additive progress in prediction ac-
curacy similar to that for the standard in vitro set see Fig. (6). 
It should be noted that the ROC plot skews the data by repre-
senting neutral and deleterious instances as equivalent in 
amount; rather the former are 4.5 times more abundant. Thus 
it might be surprising from Fig. (6) that the HUSCY method 
reaches 85% two state accuracy on the clinical set (98.5% 
specificity, 17.5% sensitivity), as for the in vitro set (87.3% 
specificity, 80.2% sensitivity). This prediction value of 70% 

above random for clinical data has not been achieved previ-
ously. Meanwhile the complete profile of predictions is 
worse with SVM training (AUC=67.7) than without 
(AUC=71.9). The amino acid substitution matrix trained 
from these data may be useful for clinicians see Supplemen-
tal Fig. (6). 

 The low sensitivity rate for disease prediction limits 
clinical relevance for this tool. As well, the HUSCY method 
trained on the standard in vitro set does not perform well on 
the clinical data set see Fig. (6, InVitro line; AUC=58.7). 
Nonetheless, there is value to the HUSCY predictions trained 
on the clinical set. The clinician and scientist can titrate the 
cutoff for each application see Supplemental Fig. (7). For 
example considering mutations with scores above 0.82 result 
in predominantly disease instances, a useful subset for de-
signing expensive bench experiments (cutoff used for cranio-
synostosis cases below). Meanwhile the larger set of muta-
tions with scores above 0.33 removes many instances vastly 
dominated by neutral mutations, which would robustly in-
form selection of SNPs for follow up screening. 

Predicted Function from Predicted Structure is Limited 

for the Clinical Set 

 The majority of the OMIM and PMD proteins do not 
have available structures or templates with which to model 
them. Meanwhile most of the mutations that are in proteins 
for which structures or templates are available, similarly 
occur in structurally undefined regions of the protein [52]. 
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Minimal significant predictions were made for core struc-
tural features (nonlocal contacts, secondary structure, and 
solvation) for many of the same proteins and positions. Thus 
many of the clinical set mutations may be located in proteins 
or regions that simply do not fold into globular domains in 
contemporary structure determination conditions. This pat-
tern may be concordant with and descriptive of mutations 
that allow life, i.e. mutations in canonical globular domains 
very often result in severe abrogation of function, failure to 
thrive, and therefore are not observed clinically. This effect 
would make the modeled neutral cases carry more pheno-
typic instances than expected at random from well studied in 
vitro systems. A structure from sequence approach may not 
bring these algorithms to clinically relevant sensitivity. Such 
sensitivity may await a data set with more tersely resolved 
phenotypic cases, more abundant neutral instances, and ad-
vancements in the understanding of the unknown human 
protein structures, which may be as many as ~40% [15]. 

Nonsynonymous SNP Amino Acid Substitution Scoring 

Matrix 

 We trained a specific amino acid substitution scoring 
matrix to select disease related nonsynonymous SNPs as a 
combination of those in the AAindex database [35] which do 
not require input other features such as secondary structure 
or solvation. The matrix (AUC=67.8) demonstrates margin-
ally higher accuracy than a sophisticated conservation meas-
ure trained for this purpose (MFS, AUC=67.0, see Fig. (6b). 
The matrix values converge to two significant figures for 
most mutation types in each of ten cross validation training 
sets. The matrix may be useful to guide a general under-
standing of the prevalence and therefore probability of each 
mutation causing phenotypic changes in patients. For exam-
ple a clinician can apply these scores instantaneously as a 
simple look up table for mutation observed in patients. 

Perfect Specificity but Weak Sensitivity for Clinical 

Cases of Craniosynostosis 

 We tested the approach before completion in a prospec-
tive test of 78 novel missense mutations found in 27 genes of 
our patients with single suture craniosynostosis. We pre-
dicted disease causality for all mutations with at least three 
scores above predetermined thresholds for any of MFS, 
HMMRE, SSR, SIFT, PMUT, MAPP, or PAM250. All four 
mutations matching these criteria described novel cases of 
craniosynostosis. 

 We also compiled a larger set of 105 missense mutations 
seen in the same control patients and patients with cranio-
synostosis, adding the previously known, multi-suture, and 
syndromic mutations. We applied the HUSCY method 
trained on the clinical data set, with the 0.82 score threshold 
described above. All test mutations found in the training set 
were removed prior to retraining. The 75 missense mutations 
observed in multiple nonaffected control patients were as-
sumed to not be related to disease, while the 30 other muta-
tions are accepted as causal in the literature. Our predictions 
select ten mutations of which all cause craniosynostosis. No 
neutral mutations were falsely predicted to be deleterious, 
yet twenty disease causal mutations remained undetected. 
The accuracy here is motivating, but again our results on 
clinical data favor specificity rather than sensitivity - it 

would be more attractive for clinical purposes to detect 
rather than reject. 

CONCLUSIONS 

 We postulated that the context of the structural environ-
ment for a missense mutation could be inferred from se-
quence analysis without building structure models, challeng-
ing ourselves to use as much information as possible before 
progressing to direct structural analysis. Our objective to 
target effects on interface support residues by modeling non-
local structural context appears successful in directing the 
automated learning of protein systems. 

 Novel missense mutations are going to keep coming. 
Roughly 50,000 nsSNPs are publicly reported in humans. An 
estimated 40,000 to 200,000 more are anticipated to already 
exist in populations under study en masse [89], through pro-
jects including the HapMap [90]. External populations such 
as Indians appear to be rich in genetic variation not yet con-
sidered in most projections of human variation [91]. Mean-
while, novel mutations will keep springing up throughout the 
course of our species, as they are under positive evolutionary 
selection to do so [92-95]. 

 Our approach uses two machine learning systems to 
tersely combine sequence, evolutionary, and physicochemi-
cal approaches to measure conservation; protein specific, 
nonprotein specific, structural context specific, and non 
structural context specific substitution matrices; predictable 
aspects of protein structure; and patterns of conservation and 
amino acid type within separable parts of the structural envi-
ronment inferred from the structural parameters. In effect we 
build on the vast work of others to model importance to in-
teraction, structure, and thereby stability, using only primary 
sequence. This work offers novel tools for predicting disease 
risk from missense mutations and for interpreting the 
mechanistic basis of disease. 
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