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INTRODUCTION

Protein structures are useful for understanding, predicting, modu-

lating, and designing biomolecular interactions, as the intermolecular

geometric and chemical complementarity is the essence of binding.

Given molecular structures, computational methods can be success-

fully used to evaluate intermolecular interactions and serve as a com-

plementary tool to experimental investigation.

A structure guided computational approach to evaluating biomo-

lecular interactions generally consists of three steps: (a) conforma-

tional sampling of the intermolecular rotational, translational, and

torsion angle degrees of freedom, (b) scoring the resulting interac-

tions with a discriminatory function to identify native and near-native

complexes from a set of incorrect conformations, and (c) relative af-

finity ranking of interactions to distinguish between strong, weak,

and nonbinders. Here, we focus on development and evaluation of a

novel atomic level discriminatory function to identify native and

near-native interactions and guide the rotational, translational, and

torsion angle conformational sampling requirements for biomolecular

interactions. Additionally, accurate discrimination of native and near-

native biomolecular interactions from incorrect conformations is criti-

cal because a failure at this step may lead to erroneous relative affinity

ranking of interactions and eventually propagate into experimental

investigation that is not well guided.

A variety of physics-based, empirical, and knowledge-based func-

tions have been used to discriminate native and near-native complexes

from a set of incorrect conformations.1 Knowledge-based functions

have proven to be particularly successful at correctly identifying a va-

riety of biomolecular interactions, including protein structure predic-

tion,2 protein-small molecule,3 protein-DNA,4 and protein-protein

complexes.5 Despite previous successes with these discriminatory

functions, generalized parameter sets have not been demonstrated to

be highly accurate across a diverse set of biomolecular interactions.

Therefore, we have evaluated several novel and established discrimina-

tory function formulations and reference state derivations, which are

crucial to the performance of knowledge-based functions, to identify

unifying parameter sets applicable to multiple types of biomolecular
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ABSTRACT

Several novel and established knowledge-based

discriminatory function formulations and refer-

ence state derivations have been evaluated to

identify parameter sets capable of distinguish-

ing native and near-native biomolecular interac-

tions from incorrect ones. We developed the

r�m�r function, a novel atomic level radial dis-

tribution function with mean reference state

that averages over all pairwise atom types from

a reduced atom type composition, using experi-

mentally determined intermolecular complexes

in the Cambridge Structural Database (CSD)

and the Protein Data Bank (PDB) as the infor-

mation sources. We demonstrate that r�m�r had

the best discriminatory accuracy and power for

protein-small molecule and protein-DNA inter-

actions, regardless of whether the native com-

plex was included or excluded, from the test

set. The superior performance of the r�m�r dis-

criminatory function compared with seventeen

alternative functions evaluated on publicly

available test sets for protein-small molecule

and protein-DNA interactions indicated that

the function was not over optimized through

back testing on a single class of biomolecular

interactions. The initial success of the reduced

composition and superior performance with the

CSD as the distribution set over the PDB

implies that further improvements and general-

ity of the function are possible by deriving prob-

abilities from subsets of the CSD, using struc-

tures that consist of only the atom types to be

considered for given biomolecular interactions.

The method is available as a web server module

at http://protinfo.compbio.washington.edu.
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interactions. The following methods for scoring biomo-

lecular interactions have been successfully applied herein

to independent protein-small molecule and protein-DNA

test sets. We demonstrate that the methods have not

been over optimized for a single class of biomolecular

interactions, suggesting suitability for additional molecu-

lar interaction types (e.g., protein–protein, protein-RNA,

protein-metal ion, DNA-small molecule, and RNA-small

molecule interactions).

METHODS

Discriminatory function formulation

We developed an atomic level knowledge-based dis-

criminatory function, using experimentally determined

interactions as the source of information (refer to the

Reference state derivation section later), for the identifica-

tion of native and near-native intermolecular complexes

from a set of ‘‘decoy’’ conformations. Following the

approach of Samudrala and Moult,2 a score S was calcu-

lated for each conformation solely using a set of intermo-

lecular atomic distances {rab
ij }, where rab

ij is the distance

between atoms i and j, of types a and b, respectively:

SðfrijabgÞ ¼ �
X
ij

ln
PðrijabjCÞ
PðrijÞ ð1Þ

Accordingly, the score was calculated as a function of

the probability P(rab
ij |C) of observing a distance r for each

intermolecular pair ij of atom types ab in a correct inter-

molecular binding mode C, relative to the probability

P(rij) of seeing any two atom types from the reference

state (i.e., prior distribution) at the same distance. This

discriminatory function formulation resembles the net

potential of mean force derived from the inverse Boltz-

mann principle,2,6,7 which is obtained by subtracting the

mean force of the reference state from the mean force of

the total system to remove all forces that are common to

all intermolecular atomic pair interactions. A key

assumption here is that experimental data from which

the potentials of mean force are derived are representa-

tive of the thermodynamic equilibrium of the interaction

types being evaluated. The ability of the discriminatory

function to identify native and near-native intermolecular

complexes from a set of decoys is therefore dependent on

the calculation of probabilities that are representative of

the energetics of the system under investigation. To iden-

tify the representation that would provide the maximum

discrimination, these probabilities were calculated and

evaluated in the form of normalized frequency distribu-

tion functions and radial distribution functions.

Normalized frequency distribution functions

Based on the number of atoms Ns located within each

discretized spherical shell, the conditional probability was

calculated as a normalized frequency distribution func-

tion according to the following:

PðrabjCÞ ¼ f ðrabÞ ¼
NsðrabÞP
r NsðrabÞ

ð2Þ

The reference state was calculated in the form of either

a mean normalized frequency distribution function aver-

aged over all n unique ab pairs in Eq. (3) or a cumula-

tive normalized frequency distribution function for all

unique ab pairs in Eq. (4):

PðrÞ ¼ f ðrÞ ¼
P

ab f ðrabÞ
n

ð3Þ

PðrÞ ¼ f ðrÞ ¼
P

ab NsðrabÞP
r

P
ab NsðrabÞ

ð4Þ

Radial distribution functions

The radial distribution function g(r) is defined such

that multiplication by the bulk density q is equal to the

observed density of atoms of type b within a distance bin

r 1 Dr given there is an atom of type a at the origin.8

The function g(r) can be thought of as a factor that,

when multiplied by the bulk density, gives a local density

about the central atom. The bulk density is q 5 N/V,

where N is the total number of atoms in the spherical

volume element V. The local densities are determined for

each radial bin by the number of atoms Ns located

within each discretized spherical shell of volume Vs with

thickness Dr, where:

Vs ¼
4

3
pðr þ DrÞ3 � 4

3
pðrÞ3 ð5Þ

Vs ¼ 4p r2Dr þ rDr2 þ Dr3

3

� �
ð6Þ

The shell volume therefore reduces to the familiar

4pr2Dr for small Dr; however, Eq. (6) was used as it is

applicable for all bin sizes Dr.
For any distance r between atoms of type ab, the con-

ditional probability in the form of a radial distribution

function is given by:

PðrabjCÞ ¼ gðrabÞ ¼
NsðrabÞ
VsðrÞP
r
NsðrabÞ
VsðrÞ

ð7Þ

The reference state was calculated in the form of either

a mean radial distribution function averaged over all n

unique ab pairs in Eq. (8) or a cumulative radial distri-

bution function for all unique ab pairs in Eq. (9):
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PðrÞ ¼ gðrÞ ¼
P

ab gðrabÞ
n

ð8Þ

PðrÞ ¼ gðrÞ ¼
P

ab
NsðrabÞ
VsðrÞP

r

P
ab

NsðrabÞ
VsðrÞ

ð9Þ

The difference between the normalized frequency dis-

tribution functions and the radial distribution functions

is that the latter account for changes in observed fre-

quencies related to the radial increase in shell volume.

Reference state derivation

Distributions

The probabilities P(rab|C) and P(r) for all combinations

of atom types were derived from pairwise atom-atom dis-

tances of experimentally determined small molecule crystal

structures in the Cambridge Structural Database (CSD)9.

For each molecule with complete solved density as queried

using ConQuest,10 symmetry equivalent molecules were

generated to a minimum distance of 15 Å from the central

molecule with the CCP4 molecular-graphics package.11

This ‘‘CSD distribution set’’ was used to score the protein-

small molecule and protein-DNA test sets.

To evaluate the effect of distribution set source data on

discriminatory ability, pairwise atom-atom distance distri-

butions between protein and DNA molecules were calcu-

lated from protein-DNA complexes in the Protein Data

Bank (PDB),12 excluding those with greater than thirty

percent identity and those complexes evaluated in the pro-

tein-DNA test set. This ‘‘PDB distribution set’’ was used to

score the protein-DNA test set, with the scoring results

being compared with those from the CSD distribution set.

Composition

Each of the distribution sets was composed in two

forms to derive the reference state. The ‘‘complete’’ com-

position includes all distances within rcutoff from all atom

types present in the selected distribution set. The

‘‘reduced’’ composition includes only distances within

rcutoff from atoms of type a paired with atoms of type b

in the selected distribution set for each molecule in the

given biomolecular complex to be evaluated.

Implementation

Atom typing

The discerned atom types and accompanying algo-

rithm were adapted from the program IDATM13 as

implemented in UCSF Chimera.14

Distance range searching

To score intermolecular complexes, all intermolecular

heavy atom pairs located at a distance r within the range

of 0 < r � rcutoff were identified. A grid hash data struc-

ture was utilized for rapid identification of satisfactory

pairs between stationary and mobile structures. Accord-

ingly, as the numbered stationary heavy atom coordinates

were read, a greatest integer function (i.e., floor function)

was applied to the coordinates, thereby assigning the

heavy atom number as a value to a ‘‘base’’ gridpoint key.

The heavy atom number was also assigned as a value to

all other gridpoint keys within rcutoff 1 1 of the ‘‘base’’

gridpoint key. The mobile molecular coordinates were

then read and floored, with the resulting coordinates

being used as the key to lookup all stationary heavy

atom number values within rcutoff of the mobile atoms.

Motivation for and incorporation of a steric
repulsion term

There was a lack of observed atom type pairs at certain

distance bins. Occasionally, this arose from atom type

pairs being inadequately represented in the selected dis-

tribution set. However, in the present work, this resulted

most frequently from certain interatomic distances being

sterically inaccessible for each atom type pair. Knowl-

edge-based functions with a formulation such as Eq. (1)

often assign a value of 0 to the score for such distance

bins. Alternatively, a score of 5 (i.e., a strongly disfavored

interaction) was assigned to penalize interatomic distan-

ces less than the sum of the van der Waals radii minus

0.6 Å that lacked observed atom type pairs in such bins

from the selected distribution set. The van der Waals

radii were taken from Bondi.15 Only heavy atoms were

considered here. However, implementations including

hydrogen could utilize the hydrogen radius of Rowland

and Taylor,16 which more accurately represents the non-

bonded contact distances observed in crystal structures.

Radii that are not available in either of these publications

were assigned a value of 2Å.

Evaluation of discriminatory functions
implemented herein

Parameters

The discriminatory function parameters evaluated are

summarized in Table I. For each parameter set, each dis-

tance cutoff from the set rcutoff 5 {4, 5, 6, . . . , 15} Å was

evaluated with a bin size Dr of 0.1Å.

Metrics

To evaluate the ability of various discriminatory func-

tion parameter sets to distinguish native and near-native

intermolecular complexes from non-native conforma-

tions, the heavy atom root mean square deviation

(RMSD) and standard score, or z-score, were calculated.

The RMSD was used to measure the average distance

between the native and decoy conformations of the mo-

bile molecule. Because of uncertainty in experimentally
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determined atomic coordinates, ‘‘accurate’’ discrimination

was defined as the lowest scoring intermolecular confor-

mation having an RMSD of less than 0.5Å from the

native conformation. The percent accuracy over all inter-

molecular complexes in each test set was calculated for

each parameter set.

The z-score was used to indicate how many standard

deviations the native and nearest-native intermolecular

complex scores were above or below the mean score.

Consequently, a lower (i.e., more negative) z-score was

indicative of the ability of the discriminatory function to

more significantly distinguish native and near-native

complexes from non-native conformations. The mean

native and nearest-native z-scores over all intermolecular

complexes in each test set were calculated for each pa-

rameter set.

Test sets

Protein-small molecule test set. The publicly available

test set17 published by Wang et al.18 was used to evalu-

ate the performance of the present function on protein-

small molecule decoy discrimination. The test set con-

sisted of 100 crystallographically determined complexes

available in the PDB,12 each containing a decoy set of

100 additional small molecule conformations generated

using AutoDock.19 In addition to evaluating various pa-

rameter sets of the present discriminatory function, this

test set enabled direct comparison to 16 additional func-

tions.3,18,20,21

Protein-DNA test set. The publicly available test set22

published by Robertson and Varani4 was used to evaluate

the performance of the present function on protein-DNA

decoy discrimination. The test set consisted of 45 crystal-

lographically determined complexes available in the

PDB,12 each containing a decoy set of 10,000 additional

intermolecular conformations generated using FTDock.23

We used this test set to evaluate the effect of distribution

set source data (i.e., interatomic distance distributions in

the CSD versus the PDB) on discriminatory ability. Addi-

tionally, this test set was selected to evaluate discrimina-

tory function performance and parameter selection on

multiple types of molecular interactions (i.e., protein-

small molecule and protein-DNA) to ensure that the

function was not over optimized through back testing on

a single class of biomolecular interactions.

RESULTS AND DISCUSSION

Evaluation of protein-small molecule
interactions

The protein-small molecule test set was used to evalu-

ate discriminatory accuracy and power of various param-

eter sets and ensure that the chosen set performs compa-

rably to existing functions.

Accuracy of protein-small molecule interactions

One objective of this work is to identify parameter sets

that have the highest accuracy for identifying protein-

small molecule complexes within 0.5Å RMSD of native.

Accordingly, accuracies of the eight evaluated parameter

sets have been plotted in Figure 1 as a function of cutoff

length.

The radial distribution function with mean reference

state, reduced composition, and 6Å cutoff (r�m�r�6) is the

most accurate parameter set for protein-small molecule

interactions, narrowly outperforming the normalized fre-

quency form. For each parameter set, the general trend is

for accuracy to decrease at cutoff lengths beyond 6Å. At

the shorter cutoff lengths of 4–6Å, the next best perform-

ing sets consist of cumulative reference states and com-

plete compositions. This is closely followed by cumulative

reference states and reduced compositions. The parame-

ter sets consisting of mean reference states and complete

compositions have very poor accuracy, as an averaging

over all atom type pairs, including those not present in

the biomolecular complex being evaluated, substantially

reduces discriminatory ability.

Comparison to alternative discriminatory functions

The success rates of the r�m�r�6 discriminatory func-

tion for several RMSD criteria are compared with other

published discriminatory functions in Table II. Interest-

ingly, less than half of the discriminatory functions per-

form better than simple steric complementarity with the

Lennard-Jones potential. The r�m�r�6 function outper-

forms these other functions, with DrugScoreCSD coming

in close behind. The major difference between these two

functions is that the reduced reference state composition

Table I
Discriminatory Function Parameter Sets Evaluated in This Work

Set Distribution function Reference state Composition

nf�m�c normalized frequency mean complete
nf�m�r normalized frequency mean reduced
nf�c�c normalized frequency cumulative complete
nf�c�r normalized frequency cumulative reduced
r�m�c radial mean complete
r�m�r radial mean reduced
r�c�c radial cumulative complete
r�c�r radial cumulative reduced

Normalized frequency, probability calculation by normalizing the observed fre-

quencies for each atom type pair at each radial distance bin by the observed fre-

quencies for each atom type pair at all radial distance bins within rcutoff; radial,

same as the normalized frequency, except that each observed frequency is further

normalized by the spherical volume element; mean, averaging normalization of

the reference state over all unique atom type pairs; cumulative, cumulative nor-

malization of the reference state for all unique atom type pairs; complete, compo-

sition including all distances from all atom types present in the selected distribu-

tion set; reduced, composition including only distances from atoms of type a

paired with atoms of type b in the selected distribution set for each molecule in

the given biomolecular complex to be evaluated.
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of the r�m�r�6 function includes only the atom type pairs

present in the given intermolecular complex, whereas the

DrugScoreCSD composition includes C, H, O, S, P, N, F,

Cl, Br, I, Ca, Fe, and Zn atoms regardless of the atom

types present in the complex being evaluated.3

Rationale for improved accuracy of the r�m�r function

Distribution function. The radial distribution functions

are generally more accurate than their normalized fre-

quency counterparts, presumably due to the subtle effect

of radial increase in shell volume on observed distribu-

tion frequencies and accompanying scores.

Reference state. Applying a mean reference state aver-

aged over all unique atom type pairs, rather than a cu-

mulative reference state, accounts for the possibility of

differing relative quantities of atom types between the

observed distance distributions in the chosen database

versus the biomolecular interactions being evaluated, as

this can significantly effect the magnitudes of calculated

interatomic pair potentials. With a mean reference state,

equal weighting is attributed to each interatomic distance

distribution regardless of varying atom type occurrences

in the distribution set source data. However, this may

result in an ineffective potential, as seen with the combi-

nation of mean reference state and complete composi-

tion, if too many atom type pairs are included in the

derivation.

Composition. With the present discriminatory function

formulation, native and near-native complexes are identi-

fied by finding the most probable atom types from those

available in one molecule to be positioned at favorable

distances from interacting atoms of another molecule.

Consequently, establishing a reference state from a

reduced composition improves discriminatory accuracy

by focusing solely on those atom type pair interactions

that are possible between the given molecular pair. For

example, if an intermolecular sp3 carbon and sp2 nitro-

gen interaction is scored at a distance bin where an sp3

oxygen and sp2 nitrogen pair has a very high occurrence,

but sp3 oxygen is not present in either molecule, then

the sp3 oxygen distributions should not be included in

the reference state and effect the scores for atom types

being evaluated at this position.

Discriminatory power of protein-small molecule
interactions

Accurate discrimination should be accompanied by a

reduction and funneling of the score as near-native inter-

Figure 1
Accuracies of the eight evaluated parameter sets for the protein-small

molecule test set. ‘‘Accurate’’ discrimination was defined as the lowest

scoring protein-small molecule conformation having an RMSD of less
than 0.5Å from the native conformation. The native conformations

were included in the accuracy calculation. The radial distribution

function with mean reference state, reduced composition, and 6Å cutoff

(r�r�6) is the most accurate parameter set for protein-small molecule

interactions.

Table II
Protein-Small Molecule Discriminatory Success Ratesa

Function

Success rate (%)

RMSD RMSD RMSD RMSD RMSD
0.0 � � 0.5 � � 1.0 � � 1.5 � � 2.0 �

r�m�r�6 80 85 87 89 92
DrugScoreCSD 77 82 83 85 87
ITScore 64b 67b 72 79 82
Cerius2/PLP 52 58 63 69 76
Cerius2/LigScore 48 58 64 68 74
SYBYL/F-Score 38 47 56 66 74
DrugScorePDB 49 58 63 68 72
Lennard-Jones 57 61 65 66 68
Cerius2/LUDI 23 33 43 55 67
X-Score 25 33 40 54 65
AutoDock 8 19 34 52 62
DFIRE – – 37 52 58
DOCK/FF n/abc 18b 37 47 58
Cerius2/PMF 32 35 40 46 52
SYBYL/G-Score 13 15 24 32 42
SYBYL/ChemScore 7 8 12 26 35
SYBYL/D-Score 3 3 8 16 26

aThe success rate at each RMSD criterion is the percentage of all protein-small

molecule complexes with the best (i.e., lowest) scoring complex having an RMSD

to the native conformation within the allowed deviation. The RMSD � 0.5Å col-

umn corresponds to the definition of ‘‘accurate’’ discrimination used in Figure 1.

The r�m�r function outperforms all other functions at distinguishing native and

near-native biomolecular interactions from incorrect conformations.
bHuang, S. Personal communication. 15 Feb 2008.
cThe success rate for DOCK/FF at RMSD 0.0Å is not available as the minimiza-

tion in DOCK changes the small-molecule position prior to scoring.
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actions approach the native conformation. Accordingly,

the same parameter set should yield both the highest ac-

curacy and best (i.e., lowest) z-score. The mean native z-

score over all protein-small molecule complexes is shown

in Figure 2 for each evaluated parameter set. The param-

eter set with the lowest average z-score was the r�m�r�6
function, coinciding with the superior accuracy perform-

ance of this parameter set.

Additionally, the mean z-scores were calculated for the

nearest-native complex (ranging from 0.12 to 2.63Å) to

investigate the extent to which native-like protein-small

molecule scores are distinguishable from all other decoy

complexes in a realistic blind docking experiment, where

the native conformation is unknown. These mean near-

est-native z-scores are plotted in Figure 3. When the

native complex is excluded from the discriminatory

power analysis, the lowest mean nearest-native z-score

with accompanying high accuracy is achieved with the

r�m�r�12 function. However, the accuracy at this cutoff is

slightly lower than the r�m�r�6 function, indicating that

near native scores may be undesirably more favorable

than native scores. Therefore, initial scoring with a 12Å

cutoff, followed by more accurate evaluation around low

scoring clusters with a 6Å cutoff, may be preferable for

protein-small molecule interactions when the native con-

formation is unknown.

As an example of the score reduction and funneling as

near-native interactions approach the native conforma-

tion, the r�m�r�6 scores are plotted in Figure 4 as a func-

tion of RMSD for PDB identifier 1adb (alcohol dehydro-

genase) with z-score of 24.5.

Alternatively, to illustrate the importance of water

molecules in the evaluation of protein-small molecule

interactions, scores for PDB identifier 1cla (chloram-

phenicol acetyltransferase) are plotted in Figure 5 as a

function of RMSD. With the inclusion of experimental

water molecules, the native score is reduced and is suc-

cessfully identified amongst all other decoys (Fig. 5(a)).

When experimental water molecules are excluded from

the complex, a non-native decoy is scored more favorably

than the native conformation (Fig. 5(b)). The interac-

tions between the protein and small molecule are medi-

ated by water molecules (Fig. 5(c)), which were removed

from all experimental complexes during test set genera-

tion but should be considered in the evaluation of bio-

molecular interactions.

Ideally, the distribution of score and z-score magni-

tudes would be indicative of whether native and near-

native complexes have been successfully identified. For

example, Figure 6 shows the score of the lowest scoring

complex for each protein-small molecule pair, including

Figure 2
The mean native z-score over all protein-small molecule complexes used

as a measure of discriminatory power for each parameter set. The

parameter set with the lowest average z-score was the r�m�r�6 function,

coinciding with the superior accuracy performance of this parameter

set.

Figure 3
The mean nearest-native z-score, excluding the native complex, over all

protein-small molecule complexes used as a measure of discriminatory

power for each parameter set. This figure suggests that scoring with the

r�m�r parameter set and a combination of 6 and 12Å cutoffs is

preferable for protein-small molecule interactions when the native

complex is unknown.
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native and non-native decoys, with respect to the z-score

for each complex. Although there is not a complete dis-

tinction between the accurate and inaccurate protein-

small molecule pairs, the inaccurate pairs are clustered at

the region of highest scores and z-scores. This may serve

as a guide for confidence in protein-small molecule scor-

ing when the native conformation is unknown.

Conformational sampling requirements for
protein-small molecule interactions

In an actual blind docking experiment, the native con-

formation is unknown and the discriminatory function

should be able to identify near-native interactions as the

decoy conformations are more native-like. Consequently,

the conformational sampling requirements can be guided

by the discriminatory ability of the function with the

exclusion of native conformations from the test set. To

evaluate the conformational sampling requirements of

the r�m�r�6 discriminatory function, ‘‘near-native accu-

racy’’ was defined as the best scoring decoy being within

0.5Å RMSD of the native conformation (due to uncer-

tainty in experimentally determined atomic coordinates)

or the best scoring decoy being closer to the native con-

formation than all other decoys, indicating that the score

is becoming more favorable as the biomolecular complex

Figure 4
Successful protein-small molecule scoring (PDB identifier 1adb) protein-small molecule complex with the r�m�r�6 function. (A),The scores of the

decoys reduce and funnel towards the native complex. The native z-score for this complex is 24.5. (B), Alcohol dehydrogenase protein structure

(gray) in complex with the native (green) and nearest-native (magenta) small molecule conformations, both of which score the best amongst all

other decoys with the r�m�r�6 function. These conformations are 0.78Å RMSD from each other, and the conformation closest to native would have

been identified in a blind docking experiment.
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is sampled closer to native. Although these criteria are

more stringent than the typical 2Å allowed deviation to

be considered near-native, this is helpful to set conforma-

tional sampling parameters for accurate identification of

more native-like conformations.

As shown in Figure 7, sampling within 0.25Å RMSD

of native allows for accurate near-native decoy discrimi-

nation. The near-native accuracy quickly drops to 50%

when the nearest decoy is between 0.25Å and 0.5Å

RMSD to native. The drop in near-native accuracy at this

distance range is due to large discrete conformational

sampling step sizes combined with uncertainty in experi-

mentally determined atomic coordinates leading to a

higher probability that the evaluated binding mode is

outside of the near-native scoring funnel. More specifi-

cally, if the experimentally determined atomic coordinates

Figure 5
An example illustrating the importance of water in evaluating the chloramphenicol acetyltransferase (PDB identifier 1cla) protein-small molecule

complex with the r�m�r�6 function. (A) With the inclusion of experimental water molecules, the native complex is identified as the water mediated

interactions between protein and small molecule contribute to this complex having the most favorable score. (B) When experimental water

molecules are excluded from the complex, several incorrect conformations, including the best scoring complex at 6Å RMSD from native, have lower

scores than the native complex. With the exclusion of water, this would be an inaccurate prediction in a blind docking experiment. (C) The

interactions between the protein (gray) and small molecule are mediated by water molecules (five blue and one red sphere), which were removed

from all experimental complexes during test set generation. With the inclusion of these experimental water molecules, the native conformation

(green) is successfully identified from all other decoys as the waters mediate hydrogen bonds between the protein and small molecule, and the red

colored water sphere sterically prohibits the incorrect decoy conformation (magenta) from being experimentally preferable. The protein binding site

is identified with and without the experimental waters.
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have an uncertainty of 0.5Å RMSD and the evaluated

decoy is another 0.25–0.5Å RMSD from this position,

then the resulting decoy may be up to 1Å RMSD away

from the true experimental conformation and the dis-

criminatory function may not identify this distant near-

est-native decoy. The continued drop in near-native accu-

racy indicates that, while the discriminatory accuracy and

power of native complexes are strong for the present

function, conformations should be sampled within 0.25Å

of native for blind protein-small molecule interactions to

be evaluated within the near-native scoring funnel. This

can be accomplished, for example, by conducting a

coarse grain search using a discriminatory function with

softer interatomic pair potentials followed by more thor-

ough sampling and evaluation around low scoring clus-

ters with the present function. Alternatively, highly

focused searches can be conducted near known or pre-

dicted binding sites selected by methods such as MFS24

and Q-SiteFinder.25

Evaluation of protein-DNA interactions

The protein-DNA test set was used to evaluate the

effect of distribution set source data from the CSD and

the PDB on discriminatory ability. Additionally, this test

set was independently chosen to evaluate parameter

selection on multiple types of molecular interactions (i.e.,

protein-small molecule and protein-DNA). Discriminatory

accuracy and power were used to address these issues.

Accuracy of protein-DNA interactions

Accuracies of the eight evaluated parameter sets are

plotted in Figure 8 for the CSD and PDB distribution

sets. The most accurate discrimination for the PDB dis-

tribution set occurs from 4 to 8Å, with a wider range of

high accuracy cutoffs for the CSD distribution set from 4

to 12Å. The high accuracy at 4Å cutoff is a result of the

test set generation method. Unlike AutoDock decoy gen-

eration for the protein-small molecule test set, the

FTDock decoy generation for protein-DNA interactions

allows for moderate steric atomic clashes. Consequently,

at 4Å cutoff the shape complementarity of the native

complex is readily identified amongst the remaining non-

native decoys for nearly all parameter sets. The optimal

cutoff varies among parameter sets at longer lengths, and

so the high accuracy at 12Å can be attributed to funda-

mental geometric and chemical properties of protein-

DNA interactions being well characterized by interatomic

pair potentials of the r�m�r parameter set with the CSD

distribution set.

At longer cutoff lengths, the CSD distribution set has

higher discriminatory accuracy than the PDB distribution

Figure 6
The r�m�r�6 score of the lowest scoring complex for each protein-small

molecule pair, including native and non-native decoys, with respect to

the z-score for accurately and inaccurately scored pairs. The inaccurately

scored pairs are clustered at the region of highest scores and z-scores.

Figure 7
Protein-small molecule conformational sampling requirements of the

r�m�r�6 discriminatory function. The ‘‘near-native accuracy’’ was defined

as the best scoring decoy being within 0.5Å RMSD of the native

conformation (due to uncertainty in experimentally determined atomic

coordinates) or the best scoring decoy being closer to the native

conformation than all other decoys, indicating that the score is

becoming more favorable as the biomolecular complex is sampled closer

to native. Sampling within 0.25Å RMSD of native allows the most

accurate near-native decoy discrimination for the evaluated protein-

small molecule test set.
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set. The improved performance of CSD over PDB distri-

bution sets has been previously discussed for protein-

small molecule interactions3. The authors have attributed

the performance to the uncertainties in atomic coordi-

nates being lower in the CSD, showing steeper pair

potential wells and better defined higher order minima.

The same rationale is applicable here to protein-DNA

interactions as similar characteristics are evident, for

example, in Figure 9 for the hydrophobic sp3 carbon–

carbon interatomic pair potential. Additionally, the

interatomic pair potential converges closer to zero at lon-

ger cutoff lengths for the CSD distribution set, which is

an important feature for a discriminatory function. Based

on discrimination accuracy, the CSD distribution set is

preferred over the PDB distribution set for reference state

derivation.

Discriminatory power of protein-DNA interactions

Because of the high accuracy of several parameter sets,

the z-score is used to assist in parameter set selection.

The mean native z-scores over all protein-DNA com-

plexes scored with the CSD and PDB distribution sets

are shown in Figure 10 for each evaluated parameter set.

Similarly, the mean z-scores were calculated for the near-

est-native complex (ranging from 0.50 to 1.44Å) to inves-

tigate the extent to which native-like protein-DNA scores

are distinguishable in a blind docking experiment from

all other decoy complexes. These mean nearest-native

z-scores are plotted in Figure 11 for the CSD and PDB

distribution sets.

Figure 8
Accuracies of the eight evaluated parameter sets for the protein-DNA

test set. ‘‘Accurate’’ discrimination was defined as the lowest scoring

protein-DNA conformation having an RMSD of less than 0.5Å from the

native conformation. The native conformations were included in the

accuracy calculation. (A) With scores derived from the CSD

distribution set. The radial distribution function with mean reference

state, reduced composition, and 12Å cutoff (r�m�r�12) is the most

accurate parameter set for protein-DNA interactions. (B) With scores

derived from the PDB distribution set. The PDB distribution set does

not perform as well as that of the CSD for reference state derivation. Figure 9
Interatomic pair potential for sp3 carbon-carbon with the r�m�r
parameter set Interatomic pair potential for sp3 carbon-carbon with the

r�m�r parameter set. The lower uncertainties in atomic coordinates in

the CSD leads to steeper pair potential wells, better defined higher order

minima, and more stable convergence to zero at longer cutoff lengths.
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While short cutoffs demonstrated high accuracy, equiva-

lent accuracies and accompanying lower z-scores were

primarily achieved at longer cutoffs. The exception is pa-

rameter sets consisting of mean reference states and com-

plete compositions, which have the most favorable z-scores,

yet have very poor accuracy performance at all cutoff

Figure 10
The mean native z-score over all protein-DNA complexes as a measure

of the discriminatory power for each parameter set. (A) With scores

derived from the CSD distribution set. Due to the high accuracy of

several parameter sets, the z-score is used to assist in parameter set

selection. The parameter set with the lowest average native z-score

accompanied by the highest accuracy was the r�m�r�12 function with the

CSD distribution set. (B) With scores derived from the PDB

distribution set. The discriminatory power of the PDB distribution set

is inferior to that attained with the CSD distribution set.

Figure 11
The mean nearest-native z-score, excluding the native complex, over all

protein-DNA complexes as a measure of the discriminatory power for

each parameter set. (A) With scores derived from the CSD distribution

set. While the lowest mean nearest-native z-score with accompanying

high accuracy is achieved with the r� m�r�14 function, a combination of

highest accuracy and lowest z-score is attained with the r�m�r�12

function and CSD distribution set and is therefore preferable for

discrimination of protein-DNA interactions. (B) With scores derived from

the PDB distribution set. The discriminatory power of the PDB

distribution set is inferior to that attained with the CSD distribution set.
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lengths. The parameter set with the lowest average native z-

score accompanied by the highest accuracy was the r�m�r�12

function with the CSD distribution set. This is in agreement

with the superior protein-small molecule discriminatory

performance of the r�m�r�6 parameter set, differing only in

cutoff length. As with accuracy, the discriminatory power of

the CSD distribution set with lower z-scores is better than

that attained with the PDB distribution set.

When the native complex is excluded from the dis-

criminatory power analysis, the lowest mean nearest-

native z-score with accompanying high accuracy is

achieved with the r�m�r�14 function and the CSD distri-

bution set. However, the accuracy at this cutoff is slightly

lower than the r�m�r�12 function, indicating that near

native scores may be undesirably more favorable than

native scores. The r�m�r�12 function with the CSD distri-

bution set is therefore preferable for discrimination of

protein-DNA interactions.

Conformational sampling requirements for
protein-DNA interactions

In an actual blind docking experiment, the native confor-

mation is unknown and the discriminatory function should

be able to identify decoys as they are more native-like.

Therefore, to evaluate the conformational sampling require-

ments of the r�m�r�12 discriminatory function with the

CSD distribution set in the case where the native conforma-

tion is unknown, ‘‘near-native accuracy’’ was defined as the

best scoring decoy being within 0.5Å RMSD of the native

conformation (due to uncertainty in experimentally deter-

mined atomic coordinates) or the best scoring decoy being

closer to the native conformation than all other decoys,

indicating that the score is becoming more favorable as the

biomolecular complex is sampled closer to native.

As shown in Figure 12, sampling within 0.5Å RMSD of

native allows for accurate near-native decoy discrimination.

The near-native accuracy is reduced to 83% when the near-

est decoy is between 0.5Å and 0.75Å RMSD to native. The

continued drop is indicative that conformations should be

sampled within 0.5Å of native for blind protein-DNA scor-

ing. This can be accomplished, for example, by using

smaller translation and rotation step sizes in fast Fourier

transform (FFT) docking protocols,23,26,27 accompanied

by more thorough sampling around low scoring clusters.

The conformational sampling requirements for protein-

DNA interactions are less stringent than for protein-small

molecule interactions (0.5Å vs. 0.25Å, respectively), presum-

ably due to the larger and symmetric helical binding inter-

face of protein-DNA complexes allowing for near-native

conformations to be more readily identified.

Comparison to an alternative discriminatory function

The discriminatory performance of the r�m�r�12 func-

tion can be compared with the best performing 5/10/1

all-atom discriminatory function of Robertson and

Varani.4 The key differences are that the 5/10/1 function

used a bin size Dr of 1Å, scored all intermolecular heavy

atom pairs located at distances r within the range of 5 < r

< 10Å, and used the PDB for distribution set source data,

whereas the r�m�r�12 function used a bin size Dr of 0.1Å,

scored all intermolecular heavy atom pairs located at dis-

tances r within the range of 0 < r � 12Å, and evaluated

both the PDB and CSD for distribution set source data.

The accuracy of the 5/10/1 function was 17.8%,

whereas that of the r�m�r�12 function was 100% with the

CSD distribution set. Although the accuracy of the

5/10/1 function is substantially lower, 82.2% of the lowest

scoring decoy complexes (i.e., excluding native) were

within 2Å RMSD of native. For the r�m�r�12 function,

only 46.7% of the lowest scoring decoy complexes were

within 2Å RMSD of native with the CSD distribution

set, and 55.6% with the PDB distribution set.

In the analysis conducted by Robertson and Varani,4

only the top 2000 FTDock scored decoys were consid-

ered. The average native z-score for the 5/10/1 function

was 26.8, whereas that of the r�m�r�12 function was

28.0 (29.2 for all 10000 decoys). These z-scores are in-

dicative of the native conformations having substantially

more favorable scores than the decoy conformations.

Although the 5/10/1 function does generate lower scores

for native and near-native complexes with respect to

Figure 12
Protein-DNA conformational sampling requirements of the r�m�r�12

discriminatory function with the CSD distribution set. The ‘‘near-native

accuracy’’ was defined as the best scoring decoy being within 0.5Å

RMSD of the native conformation (due to uncertainty in

experimentally determined atomic coordinates) or the best scoring

decoy being closer to the native conformation than all other decoys,

indicating that the score is becoming more favorable as the

biomolecular is sampled closer to native. Sampling within 0.5Å RMSD

of native allows the most accurate near-native decoy discrimination for

the evaluated protein-DNA test set.
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non-native decoys, it usually does not identify the native

experimental structure. However, identification of the

lowest scoring decoy conformation within 2Å of native

for 82.2% of the protein-DNA complexes combined with

an average native z-score of 26.8 is indicative of broad

funneling of the 5/10/1 function. This is exemplified in

Figures 13 and 14 with PDB identifier 1dsz (RXR-RAR

DNA-binding complex). For the 5/10/1 discriminatory

function (Fig. 13) there is a wider funnel toward native,

with scores reducing from the non-native distribution as

far away as 7Å until reaching a minimum score at 0.84Å

RMSD from native. Conversely, the r�m�r�12 discrimina-

tory function (Fig. 14) has a narrower funnel at approxi-

mately 1Å that continues to drop in score as the native

conformation is approached. The broader funneling of the

5/10/1 function can be attributed to the larger 1Å bin size

and the less defined pair potential wells of the PDB distri-

bution set. Broader near-native funneling, as accomplished

with the 5/10/1 function, is preferable for initial stage scor-

ing to identify favorable clusters of coarsely sampled con-

formations, with the r�m�r�12 function being subsequently

applied for finely sampled near-native scoring.

SUMMARY AND CONCLUSIONS

Several novel and established discriminatory function

formulations and reference state derivations have been

evaluated to identify parameter sets capable of distinguish-

ing native and near-native biomolecular interactions from

incorrect decoys. The radial distribution function with

mean reference state and reduced composition (r�m�r) had

the best combination of discriminatory accuracy and

power for protein-small molecule and protein-DNA inter-

actions, regardless of whether the native complex was

included or excluded from the test set. The superior per-

formance of the r�m�r parameter set for both protein-small

molecule and protein-DNA interactions was indication

that the function was not over-optimized through back-

testing on a single class of biomolecular interactions. The

only parameter to be modified and evaluated for different

classes of biomolecular interactions is the cutoff length.

The conformational sampling requirements for blind

evaluation of biomolecular interactions was guided by

the discriminatory ability of the r�m�r parameter set with

the exclusion of native conformations from the test sets.

Because of the narrow funneling and score reduction as

the native complex is approached, conformations should

be sampled within 0.25Å of native for small molecules

and 0.5Å of native for DNA to achieve accurate discrimi-
Figure 13
RMSD versus score for the RXR-RAR DNA-binding complex (PDB

identifier 1dsz) with the 5/10/1 protein-DNA discriminatory function.4

For the 5/10/1 discriminatory function there is a wide funnel towards

native, with scores reducing from the non-native distribution as far

away as 7Å until reaching a minimum score at 0.84Å RMSD from

native. The broader near-native funneling of the 5/10/1 function can be

attributed to the larger 1Å bin size and the less defined pair potential

wells of the PDB distribution set.

Figure 14
Scoring the RXR-RAR DNA-binding complex (PDB identifier 1dsz)

with the r�m�r�12 discriminatory function and CSD distribution set. (A)

The r�m�r�12 discriminatory function has a narrow scoring funnel at

approximately 1Å that continues to drop in score as the native

conformation is approached. (B) The protein structure (gray) in

complex with the native (green) and nearest-native (magenta) DNA

conformations, both of which score the best amongst all other decoys

with the r�m�r�12 function. The two conformations are 0.84Å RMSD

from each other, and the nearest-native one would have been identified

in a blind docking experiment.
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nation. This can be achieved by initial stage scoring to

identify favorable clusters of coarsely sampled conforma-

tions, with the r�m�r parameter set being subsequently

applied for finely sampled near-native scoring.

The improved performance of CSD over PDB distribu-

tion sets, discussed previously for protein-small molecule

interactions,3 was shown to be applicable to protein-DNA

interactions as well. This improved performance can be

attributed to the lower uncertainties in atomic coordinates

in the CSD leading to steeper pair potential wells, better

defined higher order minima, and the interatomic pair

potential converging to zero at longer cutoff lengths.

Naturally, the discriminatory performance is related to

the extent to which the distribution set accurately represents

the probability of observing a distance r for each intermo-

lecular pair ij of atom types ab in a correct binding mode

C. The novel ‘‘reduced reference state’’ was created to more

accurately represent these probabilities for any given biomo-

lecular complex. The initial success of this reference state

implies that further improvements are possible by deriving

probabilities from subsets of the CSD, using structures that

consist of only the atom types to be considered for the

given biomolecular interaction. If an atom type is not pres-

ent in the complex, then the intermolecular distance distri-

butions of CSD structures containing this atom type should

not be included in the reference state and effect the

observed probabilities for the atom types being evaluated.

AVAILABILITY

The method is available as a web server module at

http://protinfo.compbio.washington.edu.
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