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The Bioverse API and Web Application
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Abstract

The Bioverse is a framework for creating, warehousing and presenting biological information based on
hierarchical levels of organisation. The framework is guided by a deeper philosophy of desiring to represent
all relationships between all components of biological systems towards the goal of a wholistic picture of
organismal biology. Data from various sources are combined into a single repository and a uniform
interface is exposed to access it. The power of the approach of the Bioverse is that, due to its inclusive
nature, patterns emerge from the acquired data and new predictions are made. The implementation of this
repository (beginning with acquisition of source data, processing in a pipeline, and concluding with
storage in a relational database) and interfaces to the data contained in it, from a programmatic application
interface to a user friendly web application, are discussed.
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1. Introduction

The Bioverse project evolved over many years, with the initial idea of
a wholistic systems approach to catalogue, predict and present bio-
logical information remaining at the heart of the effort. The biologi-
cal information in the Bioverse is presently specific to the field of
‘proteomics’; these include the protein amino acid sequences, known
and predicted structures, known and predicted functions and rela-
tionships to other proteins such as functional associations in the case
of complexes or metabolic pathways and homology.

The Bioverse implementation consists of a pipeline inwhich this
information is transformed and relationships are established, a data-
base where it is organised in an efficient manner (see Chapter 23),
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an Application Programming Interface (API) that allows specific
queries to be issued against the database and a web application that
utilises the API to present the data in a browser to Internet users.

In this chapter, we discuss the highly modular Bioverse frame-
work at a conceptual level, detail the implementation of its API
and web application components and provide example uses of the
framework. We first discuss the data organisation and sources. We
then describe the usage of the Bioverse Web Application that is a
primary front end to these data. We conclude with an overview of
the API and examples of implementing useful programs that use
the Bioverse framework.

2. Audience

The Bioverse framework is designed with three audiences in mind:
our collaborators who require organism specific information to solve
the biological research problems they are working on; bioinformatics
experts who are performing large-scale systems analyses of our data;
and end users who are seeking detailed information about a particular
protein or a small set of proteins. Our collaborators work closely with
us and include the Pacific Northwest National Laboratory in Rich-
land, Washington; the National Center for Genetic Engineering and
Biotechnology, Thailand (BIOTEC); and the Beijing Genomics
Institute who are using our framework for whole genome annotation
and comparison (1, 2). Communication with these collaborators
occurs through the web site and also by exchange of raw data, so
they are the ones likely to obtain the most appropriate results for
solving a specific biological problem. The bioinformatics users expect
our data to be accessible in a consistent manner and exportable into a
format easily transformed into their existing system(s), to the extent
that the Bioverse API is developed, they have access to all our data.
The end users expect input and output to be simple, easily compre-
hensible, and to offer rapid insights for specific genes or proteins of
interest. Satisfying end users’ expectations is a daunting task, since
there are many communities with different, ambiguous, and some-
times conflicting desires. In the following sections, we detail how our
framework is designed to be valuable to all these user communities.

3. Bioverse Data

3.1. Organisation Representation of biological systems requires striking a balance
between the level of detail and abstraction to solve an intended
biological problem. An overly abstract representation will hide the
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essential differences between systems, while an overly detailed
representation will narrow the scope of the answer to a biological
question. Ontologies offer one way of representing relationships
between detailed components as concepts in the system. They are
therefore one resource to use when presenting related data.

The Bioverse is our first step towards representing the details
and organisation of entire biological systems in silico. The Bioverse
presently operates on the level of proteins. We organise and
describe them in the following ways:
l Individual molecules. These are proteins detected in the

sequences of many genomes and characterised in public
databases.

l Molecule attributes. Each molecule is uniquely identified by
its amino acid sequence. A molecule is assigned one or more
names, one or more functional annotations and one or more
structure definitions. The latter two may be experimentally
determined or predicted in silico. These attributes are in turn
described by various meta-data and can be related through
organisation methods like the gene ontology (GO) (3).

l Molecule relationships. Relationships between molecules
include explicit physical protein–protein interactions, implicit
relations such as those present in regulatory complexes and
evolutionary relationships based on sequence similarity. Such
relations are rich with information when studied in terms of
graph theoretic algorithms.

l Collections of molecules. The molecules, or proteins, are
associated with an organism they are expressed in.
While the molecules are grouped into sets or collections in

organisms, and organisms in turn can be grouped into taxonomic
hierarchies, a ‘systems biology’ perspective encourages thinking
that liberally relates many components to one another. This orga-
nisation arises from the structure of hierarchies and results in a
network of connected components. The components in the Bio-
verse are currently proteins and some nucleotide sequences but the
representational framework is extensible to include DNA, RNA,
and biologically important small molecules and ions, and their
relationships with each other. The benefits of an inclusive data
warehouse become more pronounced as the amount of interre-
lated data grows. For example, structural and functional genomics
projects rely upon the statistical significance of structural and
functional feature co-occurrence in large data sets.

3.2. Sources Studies of individual organisms, or systems in organisms, are being
conducted in parallel all around the world. Costly experiments
conclude with information about the observed functions or
structures of individual proteins or small sets of related proteins.
These dispersed pieces of data are meticulously collected into
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organism-specific databases such as Saccharomyces Genome Data-
base (SGD) (4), WormBase(5), FlyBase(6) and Human Protein
Reference Database (HPRD) (7). Specific systems-level informa-
tion is generated in a similar fashion, some focusing on global
protein properties like functional annotations, others on catalytic
or indirect interactions, and yet others on physical interactions.
Here we describe the origins of protein properties, like their
names, functional annotations, structures, and interactions as
they are catalogued by the Bioverse.

By convention, protein molecules are assigned names. Biolo-
gists seeking information about a namedmolecule can find it in the
Bioverse if the protein database where that name occurs has been
integrated. The NCBI Gene Identifiers are an example of such
names that become searchable name attributes in the Bioverse.
There is, of course, the inherent challenge of having multiple
naming systems and conventions. Settling on one system simplifies
the design but limits the usefulness to users unfamiliar with that
system, while adopting many naming systems introduces an excess
of data that appears as noise to an uninitiated observer.

Functional annotations are human-readable labels assigned to
characterise the behaviour of a protein. Such labels can refer to classes
of proteins that are being studied. The landscape of possible func-
tions can be organised into a hierarchy, as demonstrated by GO (3).
We use GO for protein functional classification both from predictive
methods (such as InterPro (8)) and from manually assigned func-
tional annotations from source databases (such as SGD).

Molecule structures, if known, are obtained from RCSB Protein
DataBank (PDB) (9). Classifications of these structures are published
by the Structural Classification of Proteins (SCOP) (10–13) and
Superfamily (14, 15) projects, both of which are inherited by the
Bioverse. Alternatively, protein structures can be predicted. A predic-
tion of the secondary structure (a positional description indicating
sheets, helices and coils) can be obtained by using a program like
PSIPRED (16). The three-dimensional tertiary structure can be pre-
dicted through various comparative and de novo methods (17–20).

Experimentally observed protein interactions are catalogued
in databases like Biomolecular Interaction Network Database
(BIND) (21), Human Protein Reference Database (HPRD) (7),
Munich Information Center for Protein Sequences (MIPS) (22)
and Database of Interacting Proteins (DIP) (23), which we use
extensively. Sequence similarity computations are performed with
BLAST against all molecules in the Bioverse.

These known and computable attributes of molecules form
the basis of our predictions. The Interolog method (24) is an
example of combining sequence similarity information with
BIND data to predict novel interactions. Similar methods are
applied to function prediction. The specifics of these methods
determine our certainty of these predictions and a confidence
value is derived accordingly (25).
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3.3. Creation and

Presentation

The initial data in the Bioverse originates from various sources.
After being gathered, it is normalised and collated using a ‘pipe-
line’. The results are stored in a relational database, and a program-
ming interface allows queries to be issued. The Bioverse Web
Application utilises this interface and provides a user-friendly inter-
face to the data (Fig. 22.1).

3.4. Pipeline The pipeline distributes data processing across many nodes in a
computer cluster (26). These data are organised into a uniform
format in preparation for loading into a centralised database, and
the execution of algorithms to summarise the data and build

Fig. 22.1. The Bioverse infrastructure described in terms of components and interfaces. External sources are processed in

a pipeline and results stored in a database. This database is accessible to the web application server that makes its

contents available to the world.
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relationships. For example, an all-versus-all profile based PSI-
BLAST (27) search is executed across all molecule sequences;
PSIPRED (16) is used for secondary structure prediction and
HMMER (28) is used to assign proteins to functional families.
Novel functional annotations are predicted based on known anno-
tations and the topology of molecule similarity and interaction
networks. The pipeline concludes by depositing data into a cen-
tralised database (Table 22.1).

Table 22.1

The Bioverse holds individual and relationship information for many molecules or

proteins. For 54 organisms (486,520 molecules) we require five TB of distributed

storage space, two months of dedicated work by 160 CPUs to process and one

week to write to a centralised relational database and create indexes on relevant

tables. The names, sequences and functional annotations of all molecules are

searchable in the Bioverse Web Application and the interaction networks are

browsable with Integrator(42)

Organism Molecules Interaction edges

Agrobacterium tumefaciens (A348 hypothetical) 5,368 5,190

Agrobacterium tumefaciens (C58 Cereon) 5,290 5,067

Agrobacterium tumefaciens (C58 UW) 5,396 4,934

Arabidopsis thaliana 27,833 88,211

Bacillus anthracis (Ames) 5,309 1,965

Bacillus subtilis 4,105 2,556

Bordetella pertussis 3,248 2,690

Brucella melitensis 3,188 2,161

Brucella suis 3,256 2,195

Caenorhabditis elegans 20,936 973,608

Campylobacter jejuni 1,634 1,506

Canis familiaris 16,817 900,459

Chlamydia trachomatis 894 357

Clostridium perfringens 2,722 1,191

Drosophila melanogaster 16,475 5,582,634

Encephalitozoon cuniculi 1,908 6,079

Escherichia coli 4,208 13,196

(continued)
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Table 22.1 (continued)

Organism Molecules Interaction edges

Halobacterium sp (NRC-1) 2,425 682

Helicobacter pylori (26695) 1,562 9,523

Homo sapiens 26,741 9,362,672

Listeria monocytogenes 2,844 1,588

Magnaporthe grisea 11,042 83,055

Methanococcus jannaschii 1,785 500

Methanococcus maripaludis (C58 UW) 1,722 453

Mus musculus 26,181 10,427,816

Mus musculus (BGI) 12,412 16,135,715

Mycobacterium bovis 3,911 1,812

Mycobacterium tuberculosis (CDC1551) 4,178 1,767

Neisseria meningitidis (mc58) 2,020 1,114

Oryza sativa (indica BGI 9311) 57,135 13,867,984

Oryza sativa (japonica KOME cDNAs) 25,875 699,232

Oryza sativa (japonica Syngenta) 60,017 1,277,025

Pan troglodytes 21,685 3,478,283

Plasmodium falciparum 5,252 29,776

Pseudomonas aeruginosa 5,555 4,977

Pyrococcus abyssi 1,896 64

Pyrococcus furiosus 2,053 834

Rattus norvegicus 22,642 11,810,162

Rhodopseudomonas palustris 4,806 4,556

Rickettsia conorii 1,374 886

Rickettsia prowazekii 834 801

Saccharomyces cerevisiae 5,801 467,989

Salmonella typhimurium 4,532 4,795

Shewanella oneidensis (2a) 4,300 2,908

Shigella flexneri (2a) 4,080 3,983

Staphylococcus aureus (mw2) 2,632 1,385

Thermotoga maritima 1,845 1,031

(continued)
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3.5. Protinfo The Protinfo suite of servers(29), available at http://protinfo.comp-
bio.washington.edu, comprises several computational techniques for
protein structure and function prediction developed by the Samu-
drala group (29–41). The results of these techniques, as they are
applied to all the proteins in the Bioverse, are integrated into the
pipeline.

4. Database

The Bioverse stores information in a relational database. Relation-
ships are stored in a space-efficient way to avoid redundancy. In
practice, however, we have found the database in a ‘‘Write Once,
Read Many’’ pattern of access, so organisational optimisations for
purposes of query efficiency are implemented. The nature of this is
in the form of a data warehouse. This is discussed in greater detail
in Chapter 23.

5. Web Application

A traditional web page represents some specialised information
with links to other related pages. The intent of a web application,
however, is different. Rather than offering small bits of data that
are loosely hyperlinked, we cohesively present a large amount of
semantically relevant biological information.

Table 22.1 (continued)

Organism Molecules Interaction edges

Vibrio cholerae 3,788 3,249

Vibrio parahaemolyticus 4,821 3,673

Vibrio vulnificus (CMCP6) 4,484 3,925

Yersinia pestis 3,898 4,216

Yersinia pestis (BGI 91001) 4,143 4,448

Yersinia pestis (BGI CO92) 3,708 4,026

Yersinia pestis (BGI KIM) 3,954 4,082

Total 486,520 75,304,986
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The Bioverse Web Application, available at http://
bioverse.compbio.washington.edu, is implemented as a single
web page. This HTML document is manipulated through
JavaScript code executed by the web browser. Interface events,
such as button clicks or form submissions, trigger JavaScript
functions. These functions may issue calls to the Bioverse API
(Section 6) to retrieve relevant data and visualise it on the
page.

For example, we consider the single molecule view of the
Bioverse Web Application (Fig. 22.2). The intent of this view is
to emphasise the relationship between all information known
about a single protein, presented relative to the amino acid
sequence of the molecule. For each molecule, this wealth of infor-
mation is initially presented in a compact form and organised into
sections. To expand these sections and see more detailed

Fig. 22.2. Single molecule view in the Bioverse. The molecule’s sequence, structure and function information is shown in

three sections. Statistics about sequence composition, as well as amino acid conservation, are expanded. Other sections

may be expanded to reveal molecule relationships and evidence supporting predicted functional annotations.
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information, buttons can be clicked on the page. Such clicks
initiate requests to the server for that information and the page is
modified in place by populating the relevant sections only. This
reduces the overhead of retrieving increasing quantities of data as
more sections are expanded, which occurs in a more traditional
web page model.

The traditional meaning of a web page is no longer useful
when describing the visible content of a web application. The
web browser becomes a platform for executing application logic
and rendering content onto an initially empty canvas. Shaping
the contents of the page in a piecemeal fashion is a dynamic
process and results in tight integration between all the data that
can be displayed, and the operations that can be performed
on it.

The initial page is empty and contains an onload function call
attached to the HTML body element. This function’s job is to
recover information about which tabs were open from the last
session (if any) and to re-open them.

The Bioverse Web Application composes its interface by ren-
dering small sections of content from a pool of predefined HTML
templates (Fig. 22.3). These are application elements such as the
list of organisms, the search form, the search results list, molecule
sequence information, and others. The content of these templates
is highly specific to their use and templates will often contain
placeholders for other templates.

Fig. 22.3. A link on the page (a) has an onclick property. When clicked, the browser calls the show_organism function (b).

This creates a new tab on the page (c) with content derived from a template (d). Note the use of the template syntax to

build the link in (a).
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In this paradigm of a dynamic web application, the meaning
of a ‘‘web page’’ is different. It is no longer possible to accurately
represent the state of the web application with a single address.
This is resolved by storing a limited subset of state information
on the server and recovering it when the web application is
loaded. This allows for a browser to follow the traditional
model of navigating away from or towards the Bioverse Web
Application while relying on the interface initialisation methods
in JavaScript to rebuild the application state most recently cre-
ated by the user.

There are some shortcuts for affecting the state by requesting
certain URLs, specifically the referencing of organisms and mole-
cules. For example, the request for the path /about will append the
‘About’ tab to the set of available tabs in the web application.
Other such shortcut URLs are /about/credits, /help, and /pre-
ferences. Similarly, visiting /oryza-sativa/123 will add molecule
number 123 of Oryza sativa (rice) to the set of open tabs.

5.1. Using the Web

Application

The hierarchical organisation of most of the data in the Bioverse
lends itself well to a ‘drill down’ presentationwhere one chooses an
organism, then a molecule in the organism and finally the attri-
butes of themolecule to inspect. However, the number of proteins
in each organism makes this impractical for the end user. It is
therefore necessary to introduce a filtering mechanism, like a
search, to focus on a smaller subset of proteins. For example,
from a systems perspective, it makes sense to select molecules
based on a protein relationship criteria. Searching the data with a
free-form user query was inspired by the success of web search
engines. The idea is to present the user with a means of writing an
expressive description of molecules of interest in a defined syntax
and focusing on only those molecules.

The search query is a whitespace separated list of tokens.
The tokens may be terms (like binding site, CCR5,
GO:000451, MQMRSRMVRLLMML) that can match the
name, functional annotation or sequence of a molecule. To
restrict which meta-data field of a molecule is searched, the
term may be preceded with a meta-data qualifier like name:,
function: or sequence:. If a term is not preceded with such a
qualifier, then its qualifier is inferred. For example, ABCC-
CEFH cannot match an amino acid sequence because it con-
tains the letter B, which is not part of the amino acid alphabet.
Similarly, dna binding cannot match a molecule name because
names cannot contain spaces.

In addition, a token may be preceded with a sign (plus, tilde,
or minus character) to indicate the rule (must, may or must not,
respectively) for matching molecules (Fig. 22.4). A term without
a sign indicates that it must occur in the annotation of a molecule.
Some example queries are: dna �binding, +kinase -atp, ‘binding
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site’ –function:iron �rna. This query syntax is sufficiently expres-
sive to allow for quite sophisticated searches to take place. The web
interface provides an explanation (Fig. 22.5).

Molecules matching these criteria are listed in order of rele-
vance. Relevance is computed by inspecting the confidence value
of matching functional annotations and listing molecules with
high matching confidence before those with a low matching con-
fidence. Name or sequence matches do not contribute directly to
this relevance measure, except to affect the ordering such that
molecules with matching functional annotations appear after
those matching the name or sequence terms (Fig. 22.6).

Fig. 22.6. Molecules matching a search query.

Fig. 22.5. Explanation of a search query. Note that due to ambiguity, the term ‘‘rna’’ may be either a name or a functional

annotation.

Plus, minus and tilde symbols may precede a term:

+term means that the term must

occur

~term means that the term may occur

–term means that the term must not

occur

Fig. 22.4. Symbols precede a term to indicate the term’s role in the molecule matching

algorithm.
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Other means of presenting results are being implemented,
which involve the algorithmic classification of matching molecules
into groups or categories by inspecting shared properties and
relationships. This would narrow the focus interactively to a
more refined set of molecules, which can be especially useful for
exploring result sets that encompass hundreds or thousands of
molecules. Superimposing such result sets onto protein interaction
networks and visualising these with tools such as Integrator (42)
can aid in comprehending the structure of the data.

6. Application
Programming
Interface (API)

The Application Programming Interface (API) is the glue between
the data in the database and an application designed to use it. The
programming interface is in the form of an Internet service. A
programmer with an Internet connection can issue queries using
the API and retrieve Bioverse data. In this section we discuss the
general idea of the API and devote the next section to describing
the API usage.

6.1. The Role of the

Bioverse API

Data-intensive web services traditionally create a database and set
up a web site to present its contents. To prune the interesting data,
a query form exists for a person to fill out, submit to the server and
have the results presented. This is ideal for an individual user with
questions that can be asked in a predictable way, or for a quick
overview of the data in the database.

From the perspective of developing a web site, such a form is
actually interfaced to a library of internal server routines that are
customised to retrieve the data from the database. These routines
are invisible but accessible indirectly through the web form men-
tioned earlier. We have exposed our library of these internal rou-
tines to the world in the form of the Bioverse API.

Applications have already beenwritten to utilise the data in our
repository (see Section 6.5). To emphasise the importance we
place upon the API, the most prominent application to utilise it
is the Bioverse Web Application itself.

6.2. The Role of the

Client

An application that utilises the Bioverse API is considered to be the
‘client’ of the Bioverse server. The API provides data in a raw but
structured format. It is not immediately meaningful for a user, so
the application programmer must transform this raw data into a
useful form. For example, the amino acid sequence of a protein
should have its positions enumerated for visualisation. This is
implemented in the Bioverse Web Application by drawing a ruler
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above the sequence with positions numbered periodically. Simi-
larly, the confidence of functional annotations (25) is a real num-
ber between 0 and 1 and can be visualised with coloured images
(Figs. 22.7a and b).

A notable use of the API by a client application is for the
visualisation of relationship networks. The Bioverse API presents
fragments of such networks in the form of parent–child relationship
lists. It is the role of the client application, such as Integrator (42), to
visualise such a list in the form of a graph and accumulate network
fragments to ‘grow’ the graph during exploration (Figs. 22.8
and 22.9).

a

b

Fig. 22.7. (a and b) Sequence position ruler and confidence bars generated by the client.

Fig. 22.8. The Bioverse Integrator (42) showing a small network of related proteins. The lower interface elements allow the

inclusion or exclusion of nodes from the network based on criteria and the adjustment of visual properties like node

colours and sizes.
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6.3. API Usage The Bioverse Application Programming Interface is a lan-
guage-agnostic interface to the data and methods implemen-
ted in the Bioverse. It allows a programmer to query the
Bioverse in many ways. Its capacity is sufficient to allow some-
one to recreate the Bioverse Web Application in the form of a
desktop application.

At the time of writing, there are more than two dozen
functions, or methods, publicly available. Because the API is
updated periodically, the online documentation should be refer-
enced for the latest information. The examples in the following
section are valid at the time of writing, but the API may have
changed since then. However, the general idea of accessing the
API remains the same. (See Section 6.6 regarding historical
changes to the API.)

Fig. 22.9. BellaVista (44), a standalone biological information viewer written in Python, visualises proteins, protein

properties and protein relationships as nodes in a graph, node attributes and edges between nodes. This flexible

application can present information loaded from local files or obtained via the Bioverse API. This includes manual and

predicted annotations, protein identifiers, protein similarity relationships (incorporating sources such as the PDB) and

Interolog relationships. This screenshot shows a network of protein relationships from Rhodopseudomonas palustris

overlaid with experimentally obtained proteomics data. Protein abundance levels under different organism growth

conditions are integrated into this view from a local file and represented as shades and sizes of nodes. The inset window

shows a heat map of members of a putative protein complex under six growth conditions. A pop-up box dynamically lists

Bioverse annotations of the selected protein retrieved via the Bioverse API.
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All methods are available for use by a programmer, but some
are intended for use by the Bioverse Web Application and return
data that are specific to the way the web application expects it,
making them less useful in the general case. Labels, such as general
or webapp, assigned to methods in the API documentation hint at
the intended usage.

There are presently two ways of accessing the API. One way is
via the standardised XML-RPC protocol and the other is via a
customised JSON interface.

6.3.1. XML-RPC The XML-RPC protocol (43) hides the complexity of encoding
method requests and decoding method responses into and from
XML. The result is that a natural syntax can be used to interface
with the server. Applications which utilise the XML-RPC protocol
include BellaVista (44) and the new Integrator code base (42).
The API usage examples (Section 6.5) utilise the XML-RPC
interface.

6.3.2. JSON JavaScript Object Notation (JSON) (45) allows encoding of the
same data structures that XML-RPC can encode: numbers,
strings, lists, and associative arrays. Unlike XML-RPC, JSON is
native to JavaScript and, incidentally, to Python. This convenient
confluencemakes it a useful dialect of communication between the
Bioverse server and the Bioverse Web Application implemented in
JavaScript.

The JSON interface is an in-house solution that addresses
the problem of the Bioverse Web Application needing to access
the same methods as are exposed by the XML-RPC interface. The
solution is to encode the request into an HTTP GET query. The
server responds to this query with a data structure encoded in
the JSON format. That format can be natively and efficiently inter-
preted by JavaScript.

Incidentally, due to the simplicity of the encoding syntax, it is
feasible for a programmer to inspect a JSON response to explore
the API or prepare for application implementation. The online
API documentation provides examplemethod requests that return
JSON data for this purpose (Section 6.4).

6.4. API Documentation The API documentation for each method is formatted for the
programmer in a convenient way (Fig. 22.10). The three sections
of this documentation describe the method’s operation and pro-
vide usage examples. The examples for the ‘Web’ section are URLs
that return JSON-formatted data. These URLs can be clicked in a
browser (to see the JSON-formatted data), embedded into a web
application (such as the Bioverse Web Application) or used any-
where the JSON format is convenient. The ‘XML-RPC’ example
code is implemented in Python and serves to illustrate the basic
idea of calling the method.
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6.5. API Usage

Examples

Here we provide and explain usage examples currently on the web
site. Care should be taken to ensure that the latest API documen-
tation is being referenced. Current examples of using the API are
present online at http://bioverse.compbio.washington.edu/api.

In the Python programming environment, accessing the API
is trivial. Python will be used throughout this section to illustrate
API principles. For example, Program 1 shows how to retrieve a
list of all organisms catalogued by the Bioverse.

import xmlrpclib

B = xmlrpclib.ServerProxy("http://bioverse.
compbio.washington.edu/api/xmlrpc/")

print B.organism()

Program 1 Listing all organisms catalogued by the Bioverse.

6.5.1. Molecules Annotated

by a Single Function

A molecule is annotated by one or more functions. Each function
is described by a function identifier (function_id) and a text label.
For example, ribulose-phosphate binding barrel is a description of
InterPro entry 11060 and is given the Bioverse function identifier
of 153787. Program 2 illustrates how we can find all molecules
annotated with this function in the organism Homo sapiens.

Fig. 22.10. Documentation for the molecule_by_name API method.
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(a)

mols = B.molecule_by_function({"organism_id":35,

"function_id":153787})

(b)

[{"bioverse_id": 64,
"function_confidence": 0.0,

"function_desc_1": "RibP_bind_barrel",

"function_desc_2": "Ribulose-phosphate binding
barrel",

"function_id": 153787,

"function_name": "IPR011060",
"organism_id": 35},

{"bioverse_id": 413,
"function_confidence": 0.25673899999999999,

"function_desc_1": "RibP_bind_barrel",

"function_desc_2": "Ribulose-phosphate binding
barrel",

"function_id": 153787,

"function_name": "IPR011060",
"organism_id": 35},

...

]

Program 2 (a) Retrieving molecules in the organism Homo sapiens (identified by the

organism identifier organism_id 35), which are annotated with function identifier

153787 (ribulose-phosphate binding barrel). (b) Partial list of resulting dictionaries

stored in the variable mols.

The Bioverse function identified by function_id 153787 might
havebeen found earlierwith the function_searchmethod,which finds
functions that have a description containing a search string. In antici-
pation of the two-step process of obtaining matching function iden-
tifiers and molecules that are annotated with those identifiers, the
molecule_by_functionmethod can accept a text string as an argument
(like function_search), match it against function descriptions and
return molecules that are annotated by those functions (Program 3).

mols = B.molecule_by_function(

{"organism_id":35,

"function_text":"Ribulose-phosphate binding
barrel"})

Program 3 Alternative version of code in Program 2.

It is important to keep in mind that ribulose-phosphate bind-
ing barrel is just a text string with which a simple text search is
performed. This means that a search for ribulose will match all
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functions containing this string like ribulose-phosphate 3-epimer-
ase, L-ribulose-phosphate 4-epimerase activity, bifunctional ribu-
lose 5-phosphate reductase/CDP-ribitol pyrophosphorylase and,
by connection, many more molecules. The string ribulose-phos-
phate binding barrel was chosen to match only one function in the
above example query.

6.5.2. Molecules Annotated

by Multiple Functions

In this example we are interested in finding all molecules in Drosophila
melanogaster (fruit fly), which are annotated by functions containing
kinase or phosphate in their descriptions. The function_text search
argument of molecule_by_function will be inadequate because of the
simple text containment search it performs; it does not accept Boolean
expressions.Wemust instead accumulate a list of functional annotations
that match the description kinase or phosphate separately (Program 4).

an = []

an += B.function_search({"q":"kinase"})

an += B.function_search({"q":"phosphate"})

Program 4 Accumulate functional annotations that contain kinase and phosphate in

their description.

Because each function has a unique function_id integer asso-
ciated with it, which we will need later, we can extract this unique
list using standard Python techniques (Program 5).

function_ids = list(set([a["function_id"] for a

in an]))

Program 5 Get unique list of function identifiers.

To retrieve a list of molecules matching any of these functions,
we will use the molecule_by_function method, but now provide it
with a list of function identifiers instead of a single value (Program
6). Given this set of molecules, we can print out their various
properties (Program 7).

mols=B.molecule_by_function({"organism_id":7,
"function_id":function_ids,

"limit":0})

Program 6 Get all molecules matching functional annotations (as identified in the list

function_ids) in Drosophila melanogaster, organism 7.

More sophisticated searches can be performed by the method
molecule_search, and additional molecule information can be
extracted with methods such as molecule_function and molecule_
interaction, which are documented online.

for m in mols:

items = [ m["bioverse_id"],

round(m["function_confidence"],2), #
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confidence to 2 decimal places

m["function_name"], # function name like

GO:12345
m["function_desc_1"], # function

description 1

m["function_desc_2"] # function
description 2 (if available)

]

print "\t".join([str(x) for x in items])

Program 7 Display identifiers (bioverse_id) of each molecule in the list mols, and a

confidence, a name and two descriptions for each function annotation separated by tabs.

6.6. Versioning of the

API Methods

Over time, changes to the API are expected. To keep histor-
ical perspective, a list of changes is documented at http://
bioverse.compbio.washington.edu/api/versions and old ver-
sions of the API remain accessible as long as possible and
necessary. This allows for work on an updated version to be
underway while maintaining continuity in application
behavior.

7. Comparison to
Other Similar
Projects

The goal of our efforts is a common shared dream among all
biologists: to understand how the genome of an organism
characterises the development and behaviour of the organism.
From a bioinformatics viewpoint, the goal is to organise all the
world’s biological information to provide semantic meaning
through complex models that ultimately model all relationships
that occur in life, from atomic level interactions to organismal
ones. To this end, several groups have created resources to
accomplish goals similar to those outlined here. Some examples
include Ensembl (46), Biozon (47), BIND (21), MIPS (22),
GRID (48), DIP (23), KEGG (49), 3D-Genomics (50), Inter-
Pro (8), PEDANT (51, 52), STRING (53), and Predictome
(54). A variety of methods also exist for protein structure,
function, and interaction prediction (see web server issues of
Nucleic Acids Research), which can be applied in a large-scale
manner to whole proteomes, but in many cases that has not
been done or the resulting data are not made available over
the web.

In general, annotation databases can be grouped into two
categories: those that are both sequence- and structure-oriented
and those that are only sequence-oriented. The latter databases
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can process larger amounts of data since the amount of struc-
tural data is limited, and structural calculations may be time-
consuming. Pathway and other network-type databases, such as
Predictome (54), are mostly sequence-oriented. Not all data-
bases are comprehensive, i.e. they do not seek to mine data
from all completely sequenced genomes simultaneously, or they
limit themselves to proteins that are well characterised. Many of
the interaction databases are limited to experimentally derived
data or manual annotations (21, 23, 48). The databases and
software differ in terms of ease-of-use and access to data; some
provide bare tables and lists of information whereas others
provide some form of abstraction (such as depictions of net-
works and cellular systems). Few provide programming inter-
faces, though this trend is changing. There are software-only
projects such as Cytoscape (55), which provides a reasonable
user interface, but the data for analysis must be explicitly pro-
vided to the program instead of referring to a centrally main-
tained and frequently updated database. Still others that provide
predicted interaction information (56) are limited to only a few
organisms or do not perform novel structural and functional
annotation of the interacting proteins (54).

Compared to these projects, the strength of the Bioverse
is primarily in our background of developing three-dimen-
sional protein structure and function modelling tools for the
past 14 years (17–20, 29–41), which augment the integration
of existing data with novel predictions. However, in perspec-
tive, all the current and future projects yield complementary
information to the scientific community, and it is the synergy
of these efforts that is most valuable to the bench biologist
seeking to solve a particular domain-specific research
problem.

8. Bioverse
Technology

All core components of the Bioverse are written in the
Python(57) programming language running on the Linux oper-
ating system. The data warehouse is implemented upon the
PostgreSQL(58) relational database that resides on a RAID
storage array and presently occupies 1.3 terabytes. The web
server daemon utilises various free software packages such as
CherryPy(59) and HTML Templates(60). The web application
is written in-house with limited support from external libraries.
JavaScript templates (61) are used for in-browser content
rendering.
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