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Abstract

Protein function is mediated by different amino acid residues, both their positions and types, in a protein sequence. Some
amino acids are responsible for the stability or overall shape of the protein, playing an indirect role in protein function.
Others play a functionally important role as part of active or binding sites of the protein. For a given protein sequence, the
residues and their degree of functional importance can be thought of as a signature representing the function of the
protein. We have developed a combination of knowledge- and biophysics-based function prediction approaches to
elucidate the relationships between the structural and the functional roles of individual residues and positions. Such a meta-
functional signature (MFS), which is a collection of continuous values representing the functional significance of each
residue in a protein, may be used to study proteins of known function in greater detail and to aid in experimental
characterization of proteins of unknown function. We demonstrate the superior performance of MFS in predicting protein
functional sites and also present four real-world examples to apply MFS in a wide range of settings to elucidate protein
sequence–structure–function relationships. Our results indicate that the MFS approach, which can combine multiple
sources of information and also give biological interpretation to each component, greatly facilitates the understanding and
characterization of protein function.
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Introduction

Vast amounts of sequence and structural data are being

generated by high-throughput technologies. Functional annota-

tions of the uncharacterized sequences and structures are

significantly lagging. The time and cost of experimental techniques

required to probe the function of all uncharacterized proteins are

prohibitive. Therefore, computational means have been increas-

ingly useful and popular in predicting and annotating functions for

the huge amount of sequence and structure data [1,2].

However, protein function prediction is itself a difficult problem

to formulate, since it is difficult to define function [2,3]. Various

functional definition schemes (such as the Enzyme Commission

[4], the Gene Ontology [5], and the SCOP superfamily [6]) have

been developed over the years and have addressed various aspects

of protein function. Instead of adopting an existing functional

definition scheme, we proposed to probe the role of individual

amino acid residues in protein function, regardless of the

functional definition schemes that are used. In such cases, the

protein function can be represented simply as a series of

quantitative values, each of which indicates the functional

importance of the corresponding amino acid residue in the

protein sequence or structure. To calculate the quantitative values

for each residue, we used a combined approach, the meta-

functional signature (MFS), which takes into account the

individual scores from various function prediction algorithms

and generates a composite score for each amino acid residue in a

given protein. Currently our signature generation protocol consists

of the following four types of scores for four different types of

information: (1) sequence conservation, (2) evolutionary conserva-

tion, (3) structural stability, and (4) amino acid type. All these

scores are generated via conceptually simple and easily imple-

mentable algorithms (described below), and their combined use

outperforms sophisticated algorithms that use only one source of

information.

Sequence conservation is one of the most utilized methods for

measuring the functional importance of individual amino acids.

Amino acid residues with more conservative variation patterns are

usually more important for the preservation of protein function.

This concept is often used to identify the functional regions of

proteins by building multiple alignments between the target

sequence and all its sequence homologues, and then analyzing the

degree of sequence conservation among each alignment site.

Various measures of sequence conservation have been proposed

over the years, with differing complexity and sophistication [7].

The simplest measures of sequence conservation are the entropy

score and its variants [8–13]. More complicated measures [14–16]

incorporate other information, such as amino acid pairwise
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similarity, physicochemical properties, and theoretical sequence

profiles, into the scoring schemes. The AL2CO program package

incorporates nine different scoring schemes, but these scores tend

to correlate with each other [17]. Recently it was also shown that a

Jensen-Shannon divergence measure improves predicting func-

tionally important residues, and that considering conservation in

sequentially neighboring sites further improves accuracy [18]. We

previously demonstrated that a relative entropy measure which

incorporates amino acid background frequencies, can better

predict functional sites than simple entropy measures [19].

Furthermore, we found that incorporating the amino acid

frequencies as estimated by the hidden Markov Models (HMMs)

further improves the performance of the relative entropy measure

[19]. In the current study, we use a sequence conservation

measure derived from HMMs (HMM_rel_ent) as one component

of our meta-functional signature generation protocol.

In addition to sequence conservation, we also incorporate

evolutionary conservation information in the meta-functional

signature. Many studies have shown that the use of phylogenetic

relationships among a group of evolutionarily related sequences

help accurate prediction of functional sites. The Evolutionary

Trace method, one of the first and the most successful of such

methods, analyzes residue variation patterns within and between

protein subfamilies from multiple alignments, maps important

residues to protein structure, and quantitatively ranks residue

importance [20,21]. A further development of the Evolutionary

Trace method allows quantitative ranking of residue importance,

by combining the use of evolutionary information and the entropy

measures [22,23]. Similarly, the ConSurf method constructs

phylogenetic relationships from a group of similar sequences,

calculates the conservation score by a Bayesian or a maximum

likelihood method, and maps the conservation information to the

protein surface [24,25]. Further, a study by Soyer et al. used site-

specific evolutionary models that assumed a different substitution

matrix for each site, for detecting protein functional sites [26]. La

et al. used evolutionary relationships among sequence fragments

(phylogenetic motifs) to infer protein functional sites [27]. del Sol

Mesa et al. presented several automated methods that divide a

given protein family into subfamilies and search for residues that

determine specificity [28]. The commonality among all these

methods is that sequence relationships are analyzed based on the

topology of an evolutionary tree, thus providing an additional level

of information instead of relying on multiple sequence alignments

alone. Here, we propose a novel method, called the state to step

ratio score (SSR), for measuring evolutionary conservation. Based

on given multiple alignments, we construct a maximum parsimony

tree, and analyze the variation patterns from the root of the tree

(theoretical ancestral sequence) to the leaf of the tree (sequences in

multiple alignments) to create a score for each amino acid residue.

The SSR score is a simple yet effective way of measuring

evolutionary conservation.

Functional signature scores can also be derived from biophysics-

based methods, using experimentally determined or computationally

predicted protein structures. For example, a recent study demon-

strated that destabilizing regions in protein structures can often be

used to provide valuable information for functional inference and

functional site identification [29]. For a given structure and a given

position, we propose that we can mutate the wild-type residue to 19

other amino acids and calculate their structural stability scores,

which can in turn be used to assign a score to each residue in a

protein. Hence, these scores can also serve as a component of protein

function prediction. We previously developed a residue-specific all-

atom probability discriminatory function (RAPDF) [30] that

compiles statistics from a database of experimental structures to

score and pick ‘‘decoy’’ structures that are more likely to be similar to

experimentally derived structures. The RAPDF has been optimized

and enhanced in recent years for protein structure prediction [31–

33]. Here, we further expanded the RAPDF to score residue

mutations on a per-residue basis. Each residue in a given protein was

mutated to one of the 19 alternative amino acids, producing new

structures that were further optimized for topology (via side chain

rearrangement) and maximized for stability (via global conformation

perturbation). In our current MFS generation protocol, we used two

RAPDF based scoring functions (RAPDF_spread and RAPDF_dif),

to measure how all mutated structures deviate from each other and

how the experimentally determined structure differs from mutated

structures, which represent the potential impact on stability for the

position and for the naturally occurring residue, respectively. These

scores separate residues conserved for structure versus function.

An additional component of the meta-functional signature is

information on the type of amino acids, such as histidine and

cysteine, which are more likely to be located in functional sites

than other amino acids. However, such ‘‘prior probability’’ for a

functional site is not explicitly modeled and incorporated by most

current functional site prediction algorithms. In our MFS

generation protocol, we used 19 binary variables (all except

Alanine) to represent the amino acid identity for each position in a

given protein. We also examined whether the explicit use of amino

acid information (for example, AAType), as opposed to the implicit

use (for example, via relative entropy calculation), could provide

additional information and better performance.

Given the complexity of defining and identifying protein

functional sites, clearly no single method will always work to

capture all protein functional site information. Therefore, several

groups have begun to incorporate information from various

sources, especially structure-derived information, to give more

accurate predictions. Work by Chelliah et al. has shown that

distinguishing the structural and functional constraints for amino

acid residues leads to better prediction of protein interaction sites

[34]. We have shown that by considering both structural and

functional constraints on protein evolution, we can better identify

functional sites and signatures [35,36]. Recently, Petrova et al.

showed that integration of seven selected sequence and structure

Author Summary

Proteins are the main building blocks and functional
molecules of the cell. Function is mediated by specific
amino acid residues in a protein sequence, in a manner
dependent on both their positions and types. Proteins are
traditionally described as a sequence of amino acids and,
when known, the experimentally determined coordinates
of this covalently linked chain. Here we propose to expand
the description of a protein to include a quantitative
measure of the functional importance for each constituent
amino acid. The resulting signature for a protein sequence
or structure is referred to as its meta-functional signature
(MFS). We present an ensemble of knowledge- and
biophysics-based methods, which exploit different types
of evidence for functional importance, as an automated
publicly available tool to build such an MFS. We use two
benchmark datasets to show that MFS can be used to
identify functionally important residues from protein
structure or sequence alone. Finally, we assess four diverse
real-world biological questions to demonstrate the ability
of MFS to give insight into the structural and functional
roles of individual residues and positions, by exploiting
protein sequence–structure–function relationships.

Protein Meta-Functional Signatures
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features into a support vector machine (SVM) framework can

improve identification of catalytic sites [37]. Furthermore, Fischer

et al. integrated sequence conservation, amino acid distribution,

predicted secondary structure and relative solvent accessibility into

a probability density framework, and showed that at 20%

sensitivity the integrated method leads to a 10% increase in

precision over non-integrated methods for predicting catalytic

residues from the Catalytic Site Atlas and PDB SITE records [38].

Youn et al. investigated the various features for discriminating

catalytic from noncatalytic residues in novel structural folds, and

showed that a measure of sequence conservation, a measure of

structural conservation, a degree of uniqueness of a residue’s

structural environment, solvent accessibility, and residue hydro-

phobicity are the best predictors of catalytic sites [39]. Other

similar studies also incorporated dozens to hundreds of features

into a machine-learning framework for catalytic site identification

[40,41]. Altogether, the previous work suggests great value in using

several complementary sequence and structure components for

scoring catalytic sites. Unlike these approaches that were largely

based on machine-learning algorithms, in the current study, we

aim to combine several sources of information regarding the

sequence, structure, evolution, and type of amino acids together

via a simple logistic regression model for function prediction,

including both catalytic sites and binding sites. The major

advantage of the regression model is that each component can

be associated with a biologically meaningful interpretation, and

that individual scores for a protein can be manually studied to gain

additional insights into different aspects of protein function, which

are not available when many components are thrown into a

sophisticated machine-learning framework. We compare the MFS

approach with several other functional site prediction algorithms,

propose enhancements to our approach, exemplify the wide

definition of function assessed by MFS, and discuss how different

components of MFS can be used to understand biological function

via four real-world examples.

Methods

Components of the Meta-Functional Signatures
Sequence conservation score. We searched each query

sequence against the Uniref90 database [42] using three iterations

of the PSI-BLAST program [43] and built multiple alignments.

We then compiled a HMM model using the HMMER package

[44] and calculated the positional relative entropy using amino

acid frequencies estimated by the HMM model.

The HMM_rel_ent score was calculated as

SHMM rel ent~
X20

i~1

pi log2 pi=pibð Þ

where pi (i = 1,…, 20) represents the amino acid emission

frequency estimated by the HMM model, and pib represents the

amino acid background frequency given in the karlin.c of the

BLAST program package [43].

Evolutionary conservation score. Using the multiple

alignments generated in the above step, we built phylogenetic

trees with maximum parsimony methods using the protpars
program in the PHYLIP program package [45]. When several

equally parsimonious trees existed, we used the first tree. For each

aligned position, we then calculate the state to step ratio (SSR) as

SSSR~Nstate

�
Nstepz1
� �

where Nstate is the number of residue types at a given alignment

position and Nstep is the total number of residue type changes in the

position as inferred from the root of the tree.

Structural stability score. We used a residue-specific all-

atom probability discriminatory function (RAPDF) score as an

indicator of structural stability. The RAPDF score is based on the

conditional probability of a conformation being native-like, given a

set of inter-atomic distances. The detailed formulation of the

RAPDF score is described elsewhere [30,31]. The original version

of this function was used as a key component of our protein

structure prediction methods that work well in the CASP blind

prediction experiments [33,46]. In the current study, we used a

modified version of the RAPDF score [32], the 37-bin RAPDF, by

using distance bins of 0.5Å intervals (rather than the 1 Å interval in

the original formula).

For each amino acid residue in a given protein structure, we first

mutated the amino acid to one of 19 alternative amino acids and

used the SCWRL side chain generation program [47] to rearrange

the side chain of the mutated amino acid. We applied the ENCAD

energy minimization protocol [48] as an intermediate step

(optional in the MFS software), to minimize steric interferences.

We then calculated the RAPDF values by a modified version of

the potential program in the RAMP program package that uses

37 distance bins for statistical inference [32]. From the set of 20

RAPDF values for the wild type amino acid and 19 alternative

amino acids, we then compiled two different summary scores.

The first summary score is the RAPDF_spread score, which is

the standard deviation of the RAPDF scores for 20 mutated

structures that differ in one residue, and is calculated as

SRAPDF spread~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX20

i~1

SRAPDF ,i{
X20

j~1

SRAPDF ,j

�
20

 !2,
19

vuut

The second summary score is the RAPDF_dif score, which is

calculated as

SRAPDF dif ~SRAPDF ,wt{
X20

i~1

SRAPDF ,i=20

where SRAPDF,wt is the RAPDF value for the wild type structure.

The RAPDF_dif score calculates the difference between wild type

structure and the mean of all 20 possible structures, while the

RAPDF_spread score assesses all 20 scores as a distribtion and is

unrelated to the identity of the wild type amino acid. Both scores

measure different aspects of structural stability induced by amino

acid mutations: the RAPDF_dif score assesses the effect of the wild

type amino acid on stability, while the RAPDF_spread score

evaluates the potential influence of this position.

Amino acid type score. Since different amino acids may

have different distributions in functionally important versus

unimportant sites (the prior probability of an amino acid being

functionally important), we also introduced a set of dummy

variables into our model, representing the amino acid identity of

the residue being considered. The 19 scores, Saatype,2, …, Saatype,20,

are all binary variables (taking value 1 or 0) and indicate whether

the corresponding amino acid is present or not (AAType).

Handling sequence-structure positional discordance. We

used structure-based functional site datasets to benchmark the

performance of our methods. Many PDB files contain chain breaks,

so the use of ATOM records in sequence-based scoring schemes is

unwise because the generated multiple alignments may not be

Protein Meta-Functional Signatures
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accurate, especially when large chain breaks are present. In our MFS

method, the two sequence-based signature scores (HMM_rel_ent,
SSR) are both generated using the SEQRES records of PDB files;

therefore, translation of these SEQRES-based coordinates to

ATOM-based coordinates is necessary. To achieve this, we

performed a global pairwise alignment of the ATOM-based

sequence and the SEQRES-based sequence using the Needleman-

Wunsch algorithm implemented in the EMBOSS program suite [49].

We then analyzed each aligned position to resolve the issue of

SEQRES-ATOM discordances: gaps in the alignments indicate

chain breaks in ATOM records, while discordant residues in

alignments represent mutated residues in structure crystallization.

We note that although global sequence alignments generally work

well, there could be cases where very large chain breaks prevent

accurate alignments; in these cases, external tools such as the S2C

server (http://dunbrack.fccc.edu/Guoli/s2c/index.php) can be

used in conjunction with PDB files to relate sequence to

coordinates, with data obtained from XML-formatted files. The

signature scores generated from the SEQRES-based sequence can

then be assigned to the corresponding ATOM-based amino acid

residues in the PDB file.

Construction of regression models. After we generated

the HMM_rel_ent, SSR, RAPDF_spread, RAPDF_dif, and

AAType scores, we then fit the data upon known functional sites

using the following logistic regression model:

log
p

1{p

� �
~azb|SHMM rel entzc|SSSRze|SRAPDF spread

zf |SRAPDF dif z
X20

i~2

di|SAAType,ize

where p is the probability that the position is a functionally important

position, a through f are model parameters, and e is the error term.

The model fitting, model checking, performance evaluation and

cross validation experiments were conducted in the software STATA

version 9.2 programming environment (College Station, TX).

Performance Evaluation of the Functional Site
Identification

We used the Thornton dataset [50] and the Lovell dataset [34]

to evaluate the performance of MFS and its variants in identifying

functional sites from protein structures. The Thornton dataset

contains 1,546 enzyme active sites from 508 proteins, and the

Lovell dataset contains 1,137 functional sites from 243 proteins.

We evaluated the performance of functional site identification by

two criteria that were used in previous studies [19]. The first

criterion is the ROC score, which evaluates how the quantitative

predictions on functional importance correlate with the binary

assignments of whether the site is functional. This score is

calculated as the area-under-the-curve by plotting the false positive

rate against the true positive rate across a range of threshold

values. The second criterion is the top-10 hits scores, which counts

how many of the top-10 scoring residues in a given protein are also

active site residues. For a given dataset, the sum of the top-10 hits

scores for all proteins are used for evaluating the performance of

different algorithms. In addition, we also calculated the specificity

and the false positive rates for each protein, when 20% sensitivity

is achieved. Assuming that TP, TN, FP, and FN represent true

positive, true negative, false positive and false negative predictions,

respectively, the sensitivity refers to TP/(TP+FN), precision refers

to TP/(FP+TP) and the false positive rate refers to FP/(FP+TN).

For the MFS and SeqonlyMFS methods, we applied five-fold

cross-validation experiments to evaluate their performance: the

entire dataset was divided into five parts, and during each cross

validation, 80% of the proteins were used for training the model,

which was then tested on the remaining 20% of the proteins.

We evaluated the performance of the MFS method by

comparison to two widely used functional site identification

programs for protein structures: the Evolutionary Trace server

(http://mammoth.bcm.tmc.edu/report_maker) and the ConSurf

server (http://consurf.tau.ac.il). We used the PDB identifier to

query the Thornton and Lovell datasets using both servers with all

default parameters and collected the output ZIP files from the ET

server and the output ‘‘amino acid conservation score’’ files from

the ConSurf server. Some proteins generated error messages or

cannot be handled by either one of the servers and therefore were

omitted from our analysis. We then used the ‘‘rho ET score’’ value

from the ET scoring file and the conservation value from the

ConSurf scoring file to evaluate the performance of these methods

by the ROC and top-10 hits scores. The ET server generates

many equal-valued scores (usually much more than 10) for the

highest-scoring residues; therefore, the top-10 hits score was not

used for ET in our comparative analysis.

For each method, we also generated modified PDB structure

files in which the temperature field was replaced by the predicted

functional importance scores. These structures were then visual-

ized using the UCSF chimera software [51] so that the color of

each residue represents the functional importance score value.

Visual inspection of the generated structures helps to understand

how and why each method worked or failed.

Implementation of a Web Server for the Generation of
MFS

We implemented the MFS generation protocol as a web server,

available at http://protinfo.compbio.washington.edu/mfs. The

input for this server is either a single chain sequence or structure

in FASTA or PDB format, respectively, and the output is the

predicted MFS score for each residue in the structure. In addition,

when an input structure is provided, a new structure file with the

temperature factor field replaced by the MFS scores is created to

enable visual inspection of functionally important regions using

molecular graphics software. If the structure file contains many

chain breaks in the ATOM records, the user can additionally

submit the complete sequence so that more accurate sequence

alignments can be generated for the query protein. If users only

submit amino acid sequence information, then the SeqonlyMFS

generation protocol will be used to predict functional sites. For an

average sized protein with 200 residues, the computation for

SeqonlyMFS can be performed within one hour, while the

computation for structure-based MFS can be performed within

one day, when the processing queue is not busy. This server will be

continuously updated when our MFS generation protocol is

refined and improved. The standalone source code used for the

MFS generation can also be downloaded at the same URL.

Results

Contributions of Meta-Functional Signature Components
to Functional Site Identification

Evaluating the performance of our meta-functional signature

(MFS) protocols required us to use a ‘‘gold standard’’ functional

site dataset of proteins with known structures. We did not use the

‘‘SITE’’ records in PDB files or ‘‘ACT_SITE’’ records in Swiss-

Prot files because these annotations are generally not well-defined

and contain high error and low coverage rates [50]. Instead, we

used the Thornton dataset [50] and the Lovell dataset [34], which

Protein Meta-Functional Signatures
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have been used in previous experiments [19,36]. The Thornton

dataset contains hand-annotated enzyme active sites extracted

from the primary literature; the Lovell dataset contains manually

compiled ligand binding sites based on literature. We used the

ROC score and the top-10 hits score to evaluate performance, as

previously described [19]. To investigate the added value of each

component of the meta-functional signatures, we compared the

performances of the incremental components of MFS: sequence

conservation (HMM_rel_ent), evolutionary conservation (SSR),

amino acid type (AAType), position structural stability (RAPDF_
spread), and residue structural stability (RAPDF_dif) (Figure 1).

Sequential incorporation of each component improves perfor-

mance. The MFS using the maximum number of components has

the best performance in predicting functional sites.

High correlations between components (independent variables) in

a linear model will tend to destabilize the model parameters and give

erroneous statistical significance. To investigate whether our MFS

models have such problems, we checked the variance inflation factor

(VIF). The VIF is a measure for each independent variable to

estimate how collinearity among variables affects the precision of

parameter estimation. VIF scores higher than 10 generally indicate

problematic models. We found that all VIF scores for the parameters

in MFS models when applied to both datasets are less than 4,

indicating that our models do not suffer from collinearity problems.

In addition, we calculated the pairwise correlation coefficients

between the HMM_rel_ent score, the SSR score, the RAPDF_-
spread score, and the RAPDF_dif score for both datasets (Table 1).

We found that the highest absolute value of correlation coefficient is

0.45 between the HMM_rel_ent and SSR scores. Therefore, each

component of the MFS protocol provides additional and predom-

inantly orthogonal information, and they can be used individually to

assess the different aspects of function.

Comparative Analysis of Meta-Functional Signature
Performance

Several web servers have been established that assign quanti-

tative scores to functionally important amino acid residues, and

map these scores to protein structures for identifying the spatial

Figure 1. Accuracy of functional site identification in the Thornton and Lovell datasets by several methods that use sequence
information only (HMM_rel_ent), then with the addition of evolutionary information (HMM_rel_ent+SSR), followed by the
addition of information on the type of amino acids (HMM_rel_ent+SSR+AAType), and finally with the additional structural
information (MFS). The ROC scores and the top-10 hits scores were used to evaluate performance. The four methods have increasing accuracy,
demonstrating the importance of combining information from sequence, structure, evolution, and amino acid type together when functionally
characterizing proteins.
doi:10.1371/journal.pcbi.1000181.g001
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clusters of important residues. We compared the performance of

MFS with two such web servers, the Evolutionary Trace (ET)

server and the ConSurf server. The ET server implements a

method that combines evolutionary and entropic information to

rank each residue by its functional importance [23], while the

ConSurf method uses phylogenetic information to measure residue

conservation [24]. Although both the ET and the ConSurf

methods map the scores to protein structures, these methods do

not use structural information explicitly in their calculation of

functional importance. Therefore, for comparison purposes, we

also used the SeqonlyMFS method, which does not use structural

information.

We used the same datasets and performance measures described

in the previous section to compare these methods. However, since

the ET server and the ConSurf server produced error messages or

could not handle some proteins, we focused our analysis on the

453/508 proteins in Thornton dataset and the 226/243 proteins

in Lovell dataset for which both servers generated outputs

(Figure 2). In addition, we did not calculate top-10 hits scores

for the ET server, because for any given protein this server

typically generates many more than 10 equal scores tied at first

place. We found that MFS and SeqonlyMFS outperform both

servers when their ROC measures were compared: for the

SeqonlyMFS and ET comparison, the sign test P-values were 1.2e-

25 and 4.4e-15 for the Thornton and Lovell datasets, respectively;

for the SeqonlyMFS and ConSurf comparison, the P-values were

1.4e-39 and 1.3e-16, respectively. In addition, the SeqonlyMFS

and MFS generated significantly more top-10 hits than the

ConSurf server for both datasets. We note that in real-world

applications, it is more important to evaluate the performance

when only the most confident predictions are given; therefore, we

also compared the precision measure and the false positive rate

when 20% sensitivity is achieved for each protein. For both

measures, MFS still has the best performance among all the

methods (Figure 2). Finally, since each protein may have a variable

number of functional sites, the sum of top-10 hits for all proteins

may not be an optimal measure of the expected performance for a

given protein. We therefore calculated the sensitivity of each

method for each protein. For the Thornton dataset, the average

sensitivity values for all proteins are 67.0%, 62.5%, and 33.7% for

MFS, SeqonlyMFS, and ConSurf, respectively. For the Lovell

dataset, the average sensitivity values are 70.0%, 66.9%, and

40.8%, respectively. Altogether, compared with methods that use

only one source of information, the MFS approach that combines

multiple sources of information can give improved performance in

predicting functionally important residues.

Applications of Meta-Functional Signatures
The MFS method can be regarded as a tool to define protein

function as a series of quantitative values. Alternatively, when

considering each component, MFS can also be treated as several

vectors with equal dimensions. In previous sections we have

demonstrated the application of MFS in functional site identifi-

cation. Here we also demonstrate the use of MFS in other types of

computational biology problems using four examples.

Identifying biological mechanistic residues by mapping

MFS scores to protein structures. The mapping of a

particular group of residues in a protein sequence to the protein

structure has been proven to be a powerful way to study protein

function, because human visual inspection can often reveal

patterns of residue clustering and help in interpreting structure-

function relationships. We applied this approach to examine how

and why the MFS method works by comparing the patterns of

high-scoring residue mapping generated by different methods.

Ornithine decarboxylase. We used the predicted functional

importance scores for an ornithine decarboxylase (PDB identifier

1ord-A) as an example to illustrate the different performance of four

methods: MFS, SeqonlyMFS, ET, and ConSurf. The structures are

represented as ribbons, with the three functional catalytic sites

(223H-316D-355K) marked as spheres, and all of the residues

colored by their predicted functional importance score (Figure 3A).

For this protein, 3, 2, and 0 functional sites are correctly identified in

the top-10 hits by the MFS, SeqonlyMFS, and ConSurf methods,

respectively (ET identifies 3 sites in its top-58 hits due to many tied

scores). Therefore, detailed analysis of these structures will help us

understand how and why the methods differ in their performance.

The orthinine decarboxylase has three structural domains: an

N-terminal ‘‘wing’’-like domain (lower left in the figure), a RLP-

dependent transferase domain that contains a large cavity with a

catalytic triad inside, and a small C-terminal a+b domain that

partially caps the cavity (top structural domain in the figure). Both

the ET and the ConSurf methods assign high scores (shown in red

and light-red color) to many residues around the cavity of the

protein. However, the three active sites do not gain the highest

scores by these two methods, therefore the ET and ConSurf

methods cannot distinguish these residues from other residues in

the same cavity. In such cases, although a cluster of high-scoring

residues is visually discernable, the chemically functional sites still

cannot be inferred easily by these two methods. However, since

both the MFS and the SeqonlyMFS methods use information

based on the type of amino acids, they are able to generate higher

scores for the functional sites observed in the benchmark sets (in

our model, histidine, aspartic acid, and lysine have higher

contributions than other types of residues), resulting in the better

identification of biologically mechanistic functional sites.

Cellobiohydrolase. A second example is a cellobiohydrolase

(PDB identifier: 1cel-A), which adopts a sandwich-like fold that

contains multiple strands in two sheets (Figure 3B). The four

functional sites (212E-214D-217E-228H) are sequentially and

spatially close to each other. Only the MFS method can correctly

identify 3 out of the 4 functional sites for this protein in the top-10

hits list, while the SeqonlyMFS and ConSurf methods fail to identify

any (ET identifies 3 sites in its top-52 hits due to many tied scores).

To make the visual inspection easier, we colored the structure so that

only the relatively high scoring residues have varying shades of red

and all other residues are blue. (For example, for the SeqonlyMFS

method, the four functional sites are shown in white, light blue, light

red and red, respectively, indicating that they have increasingly

higher functional importance scores.) None of the sequence-based

methods can identify the true functional sites because the sequences

that correspond to this particular structural fold are highly conserved

Table 1. Correlation coefficients of several components of
the MFS method in the Thornton dataset (cells in upper-right
triangle of the table) and the Lovell dataset (lower-left
triangle), respectively.

HMM_
rel_ent SSR

RAPDF_
spread

RAPDF_
dif

HMM_rel_ent 1.00 0.45 0.23 20.15

SSR 0.45 1.00 0.14 20.05

RAPDF_spread 0.23 0.16 1.00 20.42

RAPDF_dif 20.16 20.06 20.44 1.00

The components of the MFS method have a relatively low correlation with each
other, demonstrating that they can provide complementary information toward
accurate functional site prediction.
doi:10.1371/journal.pcbi.1000181.t001
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Figure 2. Performance comparison of the MFS method, the SeqonlyMFS method (HMM_rel_ent+SSR+AAType), the Evolutionary
Trace method, and the ConSurf method with the Thornton and Lovell datasets. Only proteins for which both the Evolutionary Trace and
ConSurf methods are able to give predictions are used in the comparison. Four measures are used to compare the performance, including: ROC
scores, the precision when sensitivity threshold is set at 20%, the false positive rate when sensitivity threshold is set at 20% and the top-10 hits. ET is
only used in the ROC score computation but not in other comparative analysis, since it gives many tied scores for top-scoring residues. Both the MFS
and SeqonlyMFS methods have better performances than methods that use only one type of information.
doi:10.1371/journal.pcbi.1000181.g002
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and many residues in the two sheets have relatively high

conservation scores. However, since all the residues in the two

beta-sheets are in close proximity to each other, the RAPDF scores

are more likely to have discriminatory power to identify unfavorable

residue-residue contacts, and elucidate the heavy constraints on

possible amino acid substitutions. Therefore, the additional use of

structural information helps the correct identification of more

important residues by the MFS method.

Effectiveness of MFS to understand protein domains

interactions. The MFS can also be used manually to gain

insights into the structure and function of uncharacterized

proteins, thus facilitating hypothesis generation for biochemical

experiments. We have previously reported the presence of two

tubulin-like genes, bacterial tubulin a (btuba) and bacterial tubulin

b (btubb) in the bacteria Prosthecobacter dejongeii [52]. In eukaryotes, a
and b tubulin form dimers and the dimers join each other to form

oligomers which elongate to form protofilaments. The

protofilaments constitute the microtubule cytoskeleton, which is

present in all known eukaryotes but not in bacteria or archaea.

Therefore, the presence of the tubulin-like genes btuba and btubb in

a bacteria species caused much curiosity regarding their potential

structural and functional roles as well as their evolutionary origins

[52]. In our previous publication, we performed homology

modeling-based structure prediction using the eukaryotic a/b-

tubulin dimer as the template. We analyzed the predicted dimeric

structure using RAPDF scores and concluded that btuba and btubb do

not likely form dimers in bacteria due to the structural destabilizing

effects of several amino acid residues in the dimer interfaces that are

different between btuba/btubb and eukaryotic tubulins [52]. This

finding was further supported by the fact that the electron

microscopy data did not demonstrate the presence of microtubule-

like structures in Prosthecobacter dejongeii [52]. However, in 2005, the

crystal structures of butba and btubb were solved in E.coli, showing that

btuba and btubb form dimers [53]. In addition, in vitro assembly

analysis in E.coli demonstrated that btuba and btubb form

protofilaments that contain equal concentrations of btuba and btubb,

suggesting that the two subunits have an alternate placement along

the protofilaments [54]. Therefore, we carefully re-examined why

our previous predictions regarding dimer formation were wrong.

We first compared our predicted structure in 2002 with the

experimental structure that was solved in 2005 and found that the

structure predictions are quite accurate: the Ca RMSD for btuba

(433 residues) and btubb (426 residues) between predicted and

experimental structures are 2.28Å and 2.36Å, respectively. We

Figure 3. The different predictive performance of the MFS method, the SeqonlyMFS method, the Evolutionary Trace server, and
the ConSurf server on two examples. The structure of an ornithine decarboxylase (A) (PDB identifier 1ord-A) and a cellobiohydrolase (B) (PDB
identifier 1cel-A) are shown in the ribbon representations with the functional sites (223H-316D-355K in 1ord-A, 212E-214D-217E-228H in 1cel-A)
represented as spheres. Each residue is colored by its predicted functional importance score, with the color changing from red to white to blue as the
score decreases. For 1ord-A (A), both MFS and SeqonlyMFS work well in assigning the highest scores to the functional sites. However, ET and ConSurf
also assign high scores to nearby residues in the surrounding cavity, thus the functional sites do not appear in the top-10 hits lists that are generated
by these methods. For 1cel-A (B), all the sequence-based methods are able to assign relatively high scores to the functional sites (different shades of
red color), but only the MFS method that uses structural information can boost the scores of the functional sites higher (more intense red color) to
show up in the top-10 hits list.
doi:10.1371/journal.pcbi.1000181.g003
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then generated the meta-functional signatures for the btuba/btubb

dimer using the predicted structure (Figure 4, left). Our MFS

generation protocol uses a slightly different structural stability

score (the 37-bin RAPDF [32]) than that used in the previous

publication, the 18-bin RAPDF [30]. When examining the structural

stability scores of the dimer interface, we confirmed our previous

predictions that dimer structures with bacteria-specific substitutions

such as G100 are less stable [52]. However, when examining the top-

10 residues with the highest MFS scores (20 residues depicted as red

spheres in the dimer) in the entire structure, we clearly discern a

cluster of high-scoring residues surrounding the GDP at the dimer

interface. The MFS scores support the hypothesis that the dimer

interface is indeed functionally important and binds to GDP

molecules, unlike the predictions generated by structural stability

alone. This example further underscores the importance of using

meta-functional signatures rather than structural stability scores

alone when interpreting the structural and functional roles of

individual amino acid residues. In other words, although a highly

accurate atomic resolution model was made, the functional sites were

not accurately predicted until we evaluated the evolutionary and

sequence information. Specific to this problem, we find high-scoring

clusters at the head of btuba and the tail of btubb, indirectly suggesting

that the tail of btubb may bind to the head of btuba in another dimer.

Therefore, the MFS calculation not only supports the formation of

dimers, but also the sequential addition of dimers to form

protofilaments, as verified by biochemical experiments [54].

We next examined the experimental structures for the btuba/butbb

dimer and calculated the meta-functional signatures for the dimer

(Figure 4, right). Surprisingly, we found that the experimental

structure for btuba/btubb dimer differs from our predicted structure

(and also the experimental structure of the eukaryotic tubulin dimer)

by the relative position of the dimer subunits. In the eukaryotic

dimer, when the GDP-binding domain of a and b tubulin are

oriented towards north, the a-tubulin lies above the b-tubulin so that

a-tubulin binds to the GDP in the nucleotide binding domain of b-

tubulin. In contrast, in the experimental structure of bacteria tubulin,

btuba lies above btubb, and there is no GDP molecule in their

interface, but instead there are two SO4
22 ions (shown as two small

yellow spheres). Nevertheless, through MFS analysis we still found a

cluster of high-scoring residues at the btuba/butbb interface in the

experimental structures, indicating that this interface might be a

functionally important binding site. Considering the relatively large

gap between btuba and btubb in the dimer interface in the

experimental structure, the existence of two SO4
22 ions that closely

resemble the two phosphate groups in GDP, and the cluster of high-

scoring residues suggested by the MFS analysis, together these pieces

of evidence suggest similar interaction patterns between btuba/btubb

in bacteria and a/b tubulin in eukaryotes despite their differences in

assembly, which could be due to crystallography artifacts and/or due

to the insufficient concentration of GDP molecules in solution.

Finally, by calculating the meta-functional signatures for the

experimental and predicted structures for btuba and btubb, we

identified a few amino acid mutations that confer the highest MFS

scores for the dimeric structure. The meta-functional signatures

thus suggested specific amino acids that could be introduced as

mutations in the Prosthecobacter dejongeii tubulins for functional

Figure 4. The application of MFS to understand the role of btuba/btubb dimer in the bacterial genus Prosthecobacter using the
predicted and experimental structures. Both structures are colored by depicting higher MFS scoring residues with a more intense red color,
with the top-10 high-scoring residues represented by spheres. One GTP and one GDP in the predicted structure, as well as one GDP and two SO4

22

ions in the experimental structure are shown as yellow spheres. The predicted structure is generated by homology-modeling techniques using the
eukaryotic a/b tubulin dimer (PDB identifier: 1jff) as the template. The taxol ligand and metal ions are omitted from the predicted structure for easier
depiction. In the predicted structure, btubb lies above btuba, with a GDP molecule enclosed by the dimer interface. In the experimental structure (PDB
identifier: 2btq), btuba lies above btubb and there is no GDP in the dimer interface. Our MFS analysis first confirmed that btuba and btubb indeed form
dimers due to the existence of a high-scoring cluster in their dimer interface, in contrast to previous predictions made by using the structural stability
score alone. In addition, the MFS suggests that regardless of how btuba and btubb orient with each other, their interface is functionally important and
may bind to GDP molecules.
doi:10.1371/journal.pcbi.1000181.g004
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characterization (which would take many hours of manual analysis

otherwise). Detailed biochemical and mutagenesis experiments are

ongoing for these predicted important mutations. This type of

detailed (and problem-specific) analysis is how we envision MFS

can to be used to gain critical insights into the role of particular

amino acids in protein function, and to guide experimental work.

Characterization of rare mechanisms in protein function

using MFS. We have also applied MFS to characterize

mechanisms for proteins of profoundly different function than

those in the training sets, which are limited to catalytic and protein-

ligand binding sites. Protein binding to biomineral surfaces is a

poorly understood process. One of the few mammalian proteins

known to bind the hydroxyapatite surface of bone and the only for

which the mechanism has been characterized at the atomic level is

osteocalcin, which thus forms an example of the applicability of MFS

to predict rare mechanisms in protein function.

The osteocalcin diffraction structure (PDB identifier: 1q8h) [55]

demonstrates the specific residues involved and illustrates the

mechanism for the long known function of binding to the bone

hydroxyapatite surface [56]. The specific placement of calcium

ions along the external protein surface corresponds to the

conformation of calcium ions along the exposed hydroxyapatite

surface in bone [55]. As the most abundant non-collagenous

protein in bone [57], osteocalcin regulates bone formation [58],

and was recently shown to hold a key role in endocrine regulation

of systemic metabolism [59].

Among the top five scores, SeqonlyMFS successfully identified

the three known hydroxyapatite binding residues of osteocalcin

(17E-21E-24E), with the two other top five scores highlighting two

cysteines involved in a fold-stabilizing disulfide bridge (23C–29C;

Figure 5). The full MFS creates a similar distribution of highest

functional importance, but enhances the score of a tyrosine (42Y)

above two of the hydroxyapatite binding residues. Due to this high

MFS score, we posit 42Y to be the phosphorylated residue (rather

than the three other tyrosines) regulating the cellular signaling

function for osteocalcin, which has been shown by opposing effects

on pancreatic function for mice lacking osteocalcin versus those

lacking the protein tyrosine phosphatase OST-PTP [59]. The

slightly decreased selectivity of hydroxyapatite binding residues

when including structural stability scores also corresponds to the

decreased effects of mutations on stability when functional side

chains are present along the free external protein surface, rather

than within a compact catalytic cleft. The rigor of MFS is

demonstrated here by retaining all of these residues in the top-10

scores despite the small effect on instability. Although the

functional residues in the protein include three glutamic acids

which are often represented as functional sites in the training

datasets, we note that MFS and SeqonlyMFS provide additional

information to amino acid identity information alone: first, there

are five glutamic acids in the protein yet only the three true

functional sites were picked out by both MFS and SeqonlyMFS;

second, two Cysteins that form a disulfide bridge were correctly

identified as high-scoring residues by both MFS and SeqonlyMFS,

yet Cysteines are rarely represented as functional sites in our

training datasets. Therefore, amino acid identity alone is not

sufficient to infer functionally important residues for this protein.

In comparison, the Evolutionary Trace method fails to select the

hydroxyapatite binding residues in the top-10 scores, scoring them

as fourteenth through sixteenth of the thirty seven considered from

the structure. Meanwhile, the ConSurf method selects these

residues within the top eight scores, but provides much weaker

discrimination from the rest of the protein. A large drop off in

scores occurs after the first six scores in both MFS distributions,

while over two thirds of residues are scored within this drop off

range for ConSurf. This difference in discriminatory ability is

clearly perceivable from viewing Figure 5.

The functional a-carboxy glutamic acids found by the sequence

based methods in MFS were simplified in all predictions as

glutamic acids, according to the coding nucleotide sequences, such

that post-translational modification was not considered. This

example demonstrates that MFS can be used reliably in identifying

functional residues even when structure and post-translational

modifications are not known, and the residues are not involved in

canonical catalytic reactions or protein-ligand interactions. The

identification of these modified residues indicates that MFS is

directly useful in predicting sites of post-translational modification.

Lastly, the structural simplification used in our analyses explains

the weaker discrimination of these functional residues when

Figure 5. Prediction of residues with rare function not represented in the training sets. MFS was trained on a set of residues
experimentally characterized to participate in canonical catalytic functionalities and protein-ligand interfaces. Protein binding to biomineral surfaces
is a rare function and poorly understood process, for which the only diffraction structure available is osteocalcin binding metal ions (depicted as
green spheres with ionic bonds to the c-carboxy glutamic acid (gla) residues in transparent green tube) (PDB identifier: 1q8h). The three gla residues
of osteocalcin (represented as spheres, similar to the target residues in Figure 3 above) previously shown to bind the hydroxyapatite surface of bone
are clearly selected by MFS within the top six of 49 residues, with or without knowledge of structural and post-translational modification to these
residues. These residues are selected within the top eight by ConSurf, with much lower discrimination from scores for the other residues in
osteocalcin. None of these residues are selected within the top-10 by ET. This example demonstrates the applicability of MFS to make highly accurate
and specific predictions for proteins of vastly diverse functions.
doi:10.1371/journal.pcbi.1000181.g005
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considering structure, as the experimental structure is destabilized

with the increased volume and negative charge of the a-carboxy

glutamic acid side chains.

Refinement of alignments for comparative modeling. We

explored the use of MFS to assist in generating pairwise alignments

for distantly-related proteins. Generating accurate pairwise

alignments is essential for protein structure prediction using

homology modeling techniques, because generally the first step in

homology modeling is to copy the atomic coordinates of the target

protein to the query protein for all of the aligned residues. Some of

the best alignments are produced by the 3D-Jury server [60], which

is a meta-server that collects alignment information as well as scoring

information from many individual servers for sequence-structure

alignments and generates a consensus pairwise alignment. One of

the proteins that we have worked on is the dtx protein with 639

residues. We submitted the query sequence to the 3D-Jury server to

identify the experimental structure that has the best alignment score

with the query. We used the alignment with the highest 3D-Jury

score for structural modeling. One segment of the pairwise

alignment that we generated is:

Query: GIREHAMGAIMNGISAFGANYKPYGGTFLNFVSYA

Target: GIAEQHAMTSAAGLAMGG–LHPVVAIYSTFLNRA

However, when we calculate the SeqonlyMFS for both the

query protein and the target protein, we found that both the ‘‘H’’s

(histidines) in the query and the target sequence are among the

top-10 high-scoring residues. This functional signature suggests

that there might be an alignment error; therefore, a better

alignment based on functional evidence is:

Query: GIRE-HAMGAIMNGISAFGANYKPYGGTFLNFVSYA

Target: GIAEQHAMTSAAGLAMGG—LHPVVAIYSTFLNRA

which introduces two additional gaps (generally undesirable for

structure modeling) but makes the functionally important residues

align with each other. Having more accurate 3D coordinates for

functionally important residues and regions will be especially

important in downstream function analysis and hypothesis

generation for predicted structures. Since the experimental

structure for this protein is not yet available, we were unable to

further validate the accuracy of MFS-adjusted alignments from a

structural perspective. The above procedure is merely an example

of manual adjustment of pairwise alignments for distantly related

proteins; however, with more sophisticated algorithmic develop-

ment, it will be possible to generate functional alignments, as

opposed to sequence or structure alignments, in an automated

fashion for two proteins with functions that are represented by

several variable length vectors. In such cases, rather than predicting

functional residues, a MFS-like procedure may be used for

annotation transfer between two proteins. In fact, key functional

features of protein structures have already been used to improve the

performance of annotation transfer between enzymes [61]. Such

functional alignments would be useful for both structure prediction

and functional studies of uncharacterized proteins.

Discussion

In this work we describe a meta-functional signature (MFS)

generation protocol that combines multiple sources of information

for protein functional site prediction. We also demonstrate the

ability of this protocol to characterize protein function on a per-

residue basis using four real-world examples.

The key ideas presented in this study include the separation of

structural and functional contributions, the use of pseudo-energy

functions for mutated structures to determine their effects on protein

function, and the combination of knowledge- and biophysics-based

approaches to comprehensively annotate the functional importance

of residues in a protein sequence. Most of the components of our

approach are not unique: other function prediction algorithms use

multiple sequence alignments, database information, and experi-

mental and predicted protein structures. One unique aspect of our

approach is in the integration of all the components into one unified

knowledge- and structure-based framework that can achieve more

accurate and more comprehensive predictions, yet each component

can also provide different aspects of biological insight into the

interpretation of protein function.

Since two different datasets (the Thornton set and the Lovell set)

from different sources have been used in our study, we wish to

compare and discuss the model parameters for different datasets

here. This analysis may help us understand the relative

contribution of the different scoring components in the two

datasets. To account for the different magnitude of the predictor

variables, we calculated the slope of the regression coefficient when

transforming all predictors to Z-scores. For the Thornton dataset,

the slope for the normalized HMM_rel_ent, SSR, RAPDF_spread,

and RAPDF_dif are 1.1, 0.25, 0.52, and 0.23, respectively; for the

Lovell dataset, the corresponding values are 1.1, 0.28, 0.45, and

0.19, respectively. Therefore, for the Thornton dataset that

contains catalytic sites, the model contains slightly more

contribution from structure-based scores, indicating that structure

information is relatively more important in inferring catalytic sites

than binding interfaces. In addition, we also compared the relative

contribution from the 20 amino acids to the model. For the

Thornton dataset, the five amino acids with the strongest

contributions are Glu, Lys, Asp, Arg, and Ser, respectively, with

normalized coefficients ranging from 0.55 to 0.83. For the Lovell

dataset, the five amino acids with the strongest contributions are

also Glu, Lys, Asp, Arg, and Ser, respectively, with normalized

coefficients ranging from 0.66 to 0.84. Therefore, the amino acid

identity seems to play equally important roles in these two datasets.

We note that ‘‘functional residues’’ in the context of this study

represent both catalytic sites and binding sites, yet due to the

limitations of the data sources, each test dataset only contains part

of the true functional sites, so some true positive hits may be

mistreated as non-functional sites in each dataset. Besides

comparison of two datasets, to evaluate the stability of the

regression models, we have also performed similar analysis by

comparing the five sets of models used in cross-validation

experiments, and found that the model parameters are mostly

identical between cross validations (data not shown).

Although we have presented MFS as an ensemble of scoring

components integrated by a simple logistic regression model, an

alternative way to integrate information is to use a sophisticated

machine-learning approach, for example, via SVM based

algorithms. We investigated this issue but decided to use the

regression model due to several reasons: First, although SVM is

well known to perform well on binary classification problems, it

suffers from a lack of ‘‘biological’’ interpretation. For example,

Petrova et al evaluated 26 different algorithms/classifiers in the

WEKA software package, and presented the best combination of

components as a set of seven (out of 24) residue properties for

predicting catalytic residues [37]. Furthermore, Youn et al tested

SVM on 314 different features, demonstrated that the combined

use of multiple features improves performance, and presented the

most highly ranked features [39]. Pugalenthi et al. tested 278

different features for catalytic site prediction and investigated the

performance when a subset of 50–250 features are used [40].

Although these machine-learning approaches usually lead to

improved performance, it is difficult to decode these ‘‘black

Protein Meta-Functional Signatures

PLoS Computational Biology | www.ploscompbiol.org 11 September 2008 | Volume 4 | Issue 9 | e1000181



box’’ methods and use an individual component (out of dozens or

hundreds) to interpret different aspects of biological function, as

we have done with MFS on four real-world examples. Therefore,

in these cases, a simple logistic regression model is a conceptually

better choice, where the regression parameters are easily

intelligible. Second, functional importance may be efficiently

captured by several largely independent features in a simple linear

model, without resorting to testing many more complicated

models and selecting the best performing model. For example,

in Figure 1 of Petrova et al, although SVM ranks higher than

logistic regression when comparing many different algorithms, the

performance of these two methods is indeed highly similar.

Therefore, we relied on a simple logistic regression model as the

best approach to present and integrate an ensemble of knowledge-

and biophysics-based methods in MFS.

More than just another functional site prediction algorithm,

MFS can be used as a way to define protein function via a series of

quantitative values that captures the functional importance of the

protein. By abstracting protein function into a vector (or several

vectors if each individual component is considered separately),

more sophisticated algorithms can be applied to use this

information more efficiently. Traditionally, two proteins can be

aligned together based on their sequence similarity, structure

similarity, or sequence-structure compatibility. However, the

introduction of the MFS concept makes it possible to generate

functional alignments between the two proteins. For example, we

have demonstrated that by comparing the MFS scores for two

proteins, we can potentially improve alignment accuracy using

functional signatures in a manual manner. However, an automatic

algorithm for aligning two variable-length matrices is non-trivial.

Algorithmic advancements are needed to find an optimal solution

to perform automated functional alignments for two proteins. We

are actively pursuing approximate solutions to this problem.

Besides the functional site identification methods used in the

paper, we realize that many other different types of methods exist

to identify important residues from protein sequence or structure.

Many of the methods are based on a continuous stretch of amino

acid patterns, for example, the PROSITE pattern [62] and the

BLOCKs pattern [63]. All residues in a given protein that match

particular motifs are regarded as functionally important and the

properties of the motifs may also suggest specific functional roles

for the protein. However, these methods usually result in a

significant over-prediction of ‘‘functional site’’ residues; for

example, some PROSITE patterns are composed of 3-residue

motifs that match multiple sites in multiple proteins. Therefore,

while these methods are useful for confirming whether a pattern

corresponding to a biological function exists, or for hypothesis

generation to predict the possible functional category, these

methods are usually too general for defining functional importance

on a per-residue level. We regard our method and the motif-

scanning methods as ideologically different methodologies to solve

similar problems. Together they may help users gain complemen-

tary biological insights for protein characterization.

The MFS generation protocol can be enhanced in several ways.

One advantage of the MFS concept is that it is composed of

several independent modules, so each module can be updated and

improved, without disrupting functionality of other modules. We

are improving the performance of MFS from multiple aspects.

First, while many other web servers (such as SIFT) use the entire

NR or the entire TrEMBL sequence collection, we used only the

Uniref90 data, thus allowing us to speed up BLAST searches.

However, the Uniref90 dataset is not of high-quality. Many

extremely short sequences exist and can be easily incorporated

into the alignments and many unknown amino acids are

annotated as long stretches of ‘‘X’’. In addition, we used the

PSI-BLAST program to scan the sequence database and generate

multiple alignments, which are in fact simply the pile-up version of

multiple pairwise alignments. The generation of more accurate

multiple alignments will help sequence-based conservation esti-

mations and phylogeny inferences. Furthermore, the RAPDF

calculation for mutated structures can also be optimized. An

optional step after side chain replacement is to minimize energy by

global perturbation of the structure. This step can be implemented

by the ENCAD protocol [48]. Since this procedure significantly

increases execution time we made it an optional step. A faster

generation of more accurate structural stability scores for mutated

structures would improve MFS performance. Further develop-

ment and optimization of the current protocol will greatly improve

the functional annotation of sequence and structure space.

Besides improving the performance of protein functional site

prediction, MFS scores treated as vectors may be used to discern

functional categories for a given protein (for example, assignment

of SCOP superfamily [35,64] or a GO node in the GO hierarchy).

MFS analysis also elucidates functional importance on a per-

residue level, which enables the design of rational mutagenesis and

biochemical experiments. Finally the MFS method may be used to

modify protein function, resulting in application to protein design

and drug discovery. The application of MFS protocols to many

areas of computational biology and bioinformatics, as shown by

examples in the paper, may significantly advance our understand-

ing of protein sequence-structure-function relationships and guide

experimental characterization of protein function.
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