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ABSTRACT

Motivation: The discovery of solid-binding peptide sequences is

accelerating along with their practical applications in biotechnology

and materials sciences. A better understanding of the relationships

between the peptide sequences and their binding affinities or

specificities will enable further design of novel peptides with selected

properties of interest both in engineering and medicine.

Results: A bioinformatics approach was developed to classify

peptides selected by in vivo techniques according to their inorganic

solid-binding properties. Our approach performs all-against-all

comparisons of experimentally selected peptides with short amino

acid sequences that were categorized for their binding affinity and

scores the alignments using sequence similarity scoring matrices.

We generated novel scoring matrices that optimize the similarities

within the strong-binding peptide sequences and the differences

between the strong- and weak-binding peptide sequences.

Using the scoring matrices thus generated, a given peptide is

classified based on the sequence similarity to a set of experimentally

selected peptides. We demonstrate the new approach by classifying

experimentally characterized quartz-binding peptides and com-

putationally designing new sequences with specific affinities.

Experimental verifications of binding of these computationally

designed peptides confirm our predictions with high accuracy.

We further show that our approach is a general one and can be used

to design new sequences that bind to a given inorganic solid with

predictable and enhanced affinity.

Contact: sarikaya@u.washington.edu or

ram@compbio.washington.edu

Supplementary information: Supplementary Material containing,

the quartz-binding peptide sequences, additional results and the

specific scoring matrices are available at Bioinformatics online.

1 INTRODUCTION

The formation and structuring of solid components of
biological hard tissues are controlled by proteins leading

to their complex and highly functional architectures

(Mann, 1988; Sarikaya, 1999; Weiner and Addadi, 1997).

These minerals include calcium carbonate polymorphs (CaCO3)

in mollusk shells and echinoderm spines and tests, silica-

based (SiO2) skeletal units of single-celled organisms such

as radiolarian and spicules of sponges, magnetic (Fe3O4)

nanoparticles in magnetotactic bacteria and hydroxyapatite

nanoparticles in bone and dental tissues in mammalians

(Lowenstam, 1981). Proteins are known to control nucleation,

growth and structure formation of minerals and provide

molecular scaffolds in the formation of hard tissues (Mann,

1988; Paine and Snead, 1997; Sarikaya, 1999; Weiner and

Addadi, 1997). There has been a recent surge of research

activity in utilizing genetically engineered peptides that could be

used for inorganic materials synthesis, assembly and formation

under ambient conditions (Ball, 2001; Sarikaya et al., 2003;

Seeman and Belcher, 2002).

The peptides used in practical solid materials formation

are selected using combinatorial biology techniques based

on the developments during last two decades. For example,

in vivo (e.g. phage Hoess, 2001; Smith, 1985; and cell-surface

display, Wittrup, 2001) and in vitro (e.g. ribosomal and mRNA

display, Amstutz et al., 2001) combinatorial biology protocols

originally developed to select peptides with affinity to

biological entities such as enzymes, cells, viruses and other

proteins. These approaches have recently been adapted by us

and others for selecting peptides that specifically bind to desired

inorganic material substrates (Brown, 1997; Naik et al., 2002;

Sarikaya et al., 2003, 2004; Thai et al., 2004; Whaley et al.,

2001). Although the nature of peptide-inorganic interaction

is not yet well understood, many short peptide sequences

specific to metals (silver, gold, platinum, palladium and

titanium), oxides (silica, magnetite and titanium oxide),

minerals (calcite, hydroxyapatite and quartz) and semi-

conductors (cadmium sulfide, zinc sulfide, zinc oxide and

cuprous oxide) have been discovered as potential utility

for future engineering materials and have been used in the

proof-of-principle synthesis, morphogenesis and assembly of

inorganics, finding practical applications in a wide ranging

and diverse areas of nanotechnology and medicine

(Gaskin et al., 2000; Naik et al., 2002; Sano et al., 2005;

Sarikaya et al., 2004).*To whom correspondence should be addressed.
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The question of how proteins recognize and bind to minerals
and inorganic substrates with specific affinities and specificities
has been a long-term issue both for the purpose of under-

standing hard tissue regeneration (e.g. bone and dental tissues)
and also making practical materials using synthetic peptides
as nucleators, growth modifiers or as control agents. Whether

medical or practical engineering applications, the understand-
ing of the possible mechanism(s) of inorganic formation has
to be eventually addressed for rational design and tailoring of

these peptides towards specific materials systems (Gaskin et al.,
2000; Ratner et al., 1996). Some of these questions, e.g. include
what sequence domain or molecular structure act as the

catalyzer for inorganic formation (Shimizu et al., 1998), what
sequence- or structure-affect-oriented nucleation or control
growth are all part of this puzzle. Experimental as well as

modeling studies towards this understanding are in their
infancy (De Yoreo and Dove, 2004; Mann, 1988; Paine et al.,
2001; Weiner and Addadi, 1997), and accurate force field
parameters required to model the protein substrate interaction

are still under development (Gray, 2004; Oren et al., 2005;
Zhou et al., 2003). The diverse range of inorganics that need
to be characterized further confounds the solution to this

problem.
Our approach in addressing the issue of specific inorganic-

binding peptides is based on the observation that, in nature,

proteins that perform similar functions usually have similar
sequences due to evolutionary, biochemical and biophysical
constraints (Attwood, 2000). Protein sequence alignment is

a basic tool used by biologists for various analyses, from
detecting key functional residues to inferring the evolutionary
history of a protein family. Typically, pairs of sequences are

aligned using an optimization procedure, such as dynamic
programming (DP) (Needleman and Wunsch, 1970; Smith and
Waterman, 1981) that finds the best possible relative arrange-

ment of the amino acids maximizing the overall similarity
score. Various heuristic methods that aim for speed rather than
absolute accuracy have been developed (Altschul et al., 1994,

1997; Lipman and Pearson, 1985; Pearson and Lipman, 1988;
Thompson et al., 1994). A scoring matrix is used to obtain
the score for aligning two amino acids (match or mismatch) in

an alignment of two protein sequences, and the overall score
can be considered as a measure of the similarity between
sequences. BLOSUM (Henikoff and Henikoff, 1992) and PAM

(Dayhoff et al., 1978) are two widely used scoring matrices
derived from naturally occurring sequences. These matrices
have been extensively evaluated for nucleotide and protein

sequence comparisons with the primary goal of inferring
homology or evolutionary relationships found in nature.
We hypothesized that a set of peptides generated by directed

evolution through in vivo selection to recognize a given solid
material will have similar sequences, much as evolutionarily
related proteins do. Based on this, we defined a metric to

assess the global similarities of selected sets of experimentally
determined inorganic binders to shed more light into the
understanding of the similarities of these peptides. The

relationships among the known inorganic binders were then
used to bootstrap new scoring matrices (Gonnet et al., 1992;
Kann et al., 2000) and to select novel peptides with specific

affinities from a pool of randomly generated ones. Using this

approach, we are able to identify novel peptides with
predictable functionalities including superior- or non-binding
to a given inorganic material.

2 MATERIALS AND METHODS

2.1 Computational methods

2.1.1 Data source Peptides binding specific inorganics were

produced using phage-display techniques as described in Naik et al.

(2002), Sarikaya et al. (2003), Smith (1985) and Whaley et al. (2001).

Briefly, a phage library (New England Biolabs Inc., 2006) containing

2.7� 109 phage clones was exposed to the target substrate and in vivo

selection or panning was carried out by washing away the unbound

phage, and eluting the specifically bound phage. The eluded phage is

then amplified and taken through additional binding/amplification

cycles to enrich the pool in favor of binding sequences. We used a total

of 39 quartz (rhombohedral silica, SiO2)-binding peptides in the quartz-

specific analyses described here (see Supplementary Material). These

peptides were further characterized using affinity analysis such as

fluorescence microscopy in which the bound phages are visualized and

classified into 10 strong, 14 moderate and 15 weak binders. Further

details of the generation procedure are given elsewhere (Oren et al.,

2007).

2.1.2 Similarity score calculation The Needleman–Wunsch

dynamic programming algorithm (Needleman and Wunsch, 1970),

which guarantees an optimal scoring alignment with a given scoring

matrix, was used for sequence similarity comparisons. Given a scoring

matrix, the overall similarity score of a pairwise alignment is defined

by the sum of all similarity values of the aligned residue pairs minus

a gap penalty for every insertion or deletion introduced into and/or

extended in the alignment.

In general, the cost for opening a new gap in a sequence is higher

than extending an existing gap, and the accuracy of the alignment

heavily depend on the selection of these parameters (Vogt et al.,

1995). In the following calculations the affine gap formula,

g(k)¼�gop�(k� 1)gep is used to penalize the gaps. Here, k is the

gap length (k¼ 1, 2, . . . , n), gop and gep are the gap opening and gap

extension penalties, respectively. In this work, we assumed that

gep¼ 0.1gop.

Using the Needleman–Wunsch algorithm, the pairwise similarity

scores (PSS) of any two peptide sequences with a given scoring matrix

and gap opening and extension penalties was first calculated, followed

by the total similarity scores (TSS) between two sets of binders, A and

B, by using every possible PSS. TSS calculated using the sequences

within the same set is referred to as self-TSS otherwise TSS calculated

between different sets is referred to as cross-TSS. The TSS are

normalized according to following expression:

TSSA�B A½ �NA� B½ �NB

� �
¼

1

NA � NB� �ABð Þ

XNA

i¼1

XNB

j¼1

PSSij 1� �ij�AB
� �

ð1Þ

where, � is the usual Kronecker delta function

(�ij ¼ 1 if i ¼ j ^ �ij ¼ 0 otherwise), NA and NB are the total number

of sequences in sets A and B, and PSSij is the PPS value between the i th

sequence of set A and j th sequence of set B.

2.1.3 Scoring matrix generation Scoring matrices such as

BLOSUM 62 and PAM 250 are derived from naturally occurring

protein sequences and are generally meant to be applied to such

sequences. The utility of these scoring matrices may be limited in terms

of comparing peptides that bind to inorganic substrates that were

selected by directed evolution. A given set of inorganic binders are
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typically characterized semi-quantitatively through immunofluores-

cence microscopy into three groups as strong, moderate and weak

binders (Sarikaya et al., 2003). Our goal is to use existing scoring

matrices as a starting point to derive new ones that capture the

relationships within the strong binders while differentiating them from

the weak-binding peptides. To accomplish this, we iteratively perturb

the matrices using a greedy procedure: after each perturbation

we calculated both the self-TSS of the strong binders (TSSS–S) and

the cross-TSS between the strong and weak binders (TSSS–W). The

maximization of the difference between TSSS–S and TSSS–W is used

as an objective function and any perturbation that increased this

difference is accepted and all other perturbations are rejected.

2.1.4 Computational inorganic-binding peptide design Our

bioinformatics approach also enables us to generate novel peptide

sequences with predictable binding affinities. To accomplish this,

we first generated random sequences based on the observed amino acid

frequencies in the phage library used for the combinatorial selection

(New England BioLabs Inc., 2006). We then calculated the TSS

between each of these sequences and the experimentally determined

strong binder group. Sequences with the highest and lowest similarity

scores were considered to represent the strongest and weakest binders,

respectively.

2.2 Experimental methods

Designed peptides were synthesized by and purchased from United

Biochemical Research Inc. (Seattle, WA, USA) with a purity495%.

For adsorption characterization of the designed peptides on SiOx, a

Kretschmann configuration surface plasmon resonance (SPR) spectro-

meter, developed by Radio Engineering Institute Czech Republic, was

used. SPR spectroscopy detects the refractive index change at a metal

aqueous interface (Jung et al., 1998). Commonly gold (50 nm) and silver

is used as sensing layer on SPR chip. We used SiOx as an additional

layer on gold for novel biosensing applications (Szunerits and

Boukherroub, 2006). We first coated a gold SPR chip with 4 nm SiOx

using ion-beam sputter coater (Gatan Inc., PA, USA), operated at

6 keV with a 10mA/cm2 ion current density and under 6� 10�5 Torr

vacuum. The amount of bound peptide on the surface was determined

by the shift in the refractive index dip position. A higher shift reflects

high amount of peptide adsorption and a sharp increase reveals a faster

binding (Chang et al., 2006; Tamerler et al., 2006).

3 RESULTS AND DISCUSSIONS

3.1 Similarity analysis of experimentally characterized

quartz-binding peptides

The experimentally characterized quartz-binding peptides

(10 strong, 14 moderate and 15 weak binders; see Methods)

were used to develop our bioinformatic approach. Sequence

relationships within and between different affinity groups were

determined by calculating the TSS for sequences belonging each

of the three affinity groups. The TSS were calculated using

both BLOSUM 62 (Fig. 1A) and PAM 250 (Fig. 1B) scoring

matrices and with various gap opening (1–10) and extension

penalties (0.1–1), and the penalties that minimized self- and

cross-TSS while remaining positive were chosen for further

analysis (see Supplementary Material).

Figure 1A and B shows that the self-TSS of strong-binding

quartz sequences (black bars) is higher while the self-TSS of

weak quartz binders (light gray bars) is lower compared to the

TSS of all quartz binders (white bars with gray base).

The similarity scores reveal that a relatively small number of

sequences with significant sequence similarity to each other

possess strong affinity to quartz. The remaining sequences are

either moderate or weak binders and therefore have lower or no

significant similarities. This observation provides evidence in

favor of our hypothesis that relationships between experimen-

tally discovered sequences can be uncovered using bioinfor-

matics tools developed for naturally occurring protein sequence

analysis. Further, it enables one to use the similarity scores to

design and characterize new material-specific scoring matrices

as well as peptides with specific binding affinities and

specificities.

3.2 Design of quartz-specific scoring matrices

We hypothesized that the predictive power of approach could

be further improved (beyond what is observed in Fig. 1A

and B) by developing a new scoring matrix that takes into

account the specific sequence patterns responsible for quartz

binding. We chose PAM 250 as the seed matrix to optimize

a new scoring matrix specific to inorganic quartz-binding

peptides (QUARTZ I) (see Methods section). This matrix,

along with the BLOSUM 62 and PAM 250 were then used to

classify the experimentally characterized peptides.

3.3 Classification of experimentally characterized

quartz-binding peptides

To demonstrate the predictive power of our approach to

characterize the binding affinities of the quartz-binding

peptides, the TSS between each peptide sequence (P) and the

strong quartz binder group (TSSP–S) were calculated. This was

accomplished by removing the peptide being evaluated from the

strong quartz binder set, if present, to prevent an artificial

inflation of the similarity scores (i.e. leave-one-out cross-

validation). The results are illustrated in Figure 2A–C for the

three scoring matrices used. In Figure 2, the top bar graphs

are the similarity scores between the individual quartz binders

and the strong quartz binder set, the middle bar graphs are

their corresponding surface coverage values (higher values

indicate greater binding affinities), and the bottom bars show

the correspondence between the predicted and experimental

Fig. 1. (A and B) Total similarity scores (TSS) between the strong

(S: black), moderate (M: dark gray) and weak (W: light gray) quartz

binders. The TSS were calculated using the (A) BLOSUM 62 and (B)

PAM 250 scoring matrices with gap penalties that minimize TSS while

ensuring that the sign is positive (see Supplementary Material). The TSS

of all the sequences is indicated in white with gray base. Sequences that

strongly bind quartz have the highest self-TSS.

E.E.Oren et al.
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affinities. The results indicate that even though the BLOSUM

62 and PAM 250 scoring matrices work well (50 and 60%

accuracy, respectively), the QUARTZ I matrix is able to most

accurately (80%) classify the known experimental quartz

binders according to their affinities.
We also carried out similarity score classification of a given

peptide by comparing it with both the strong (TSSP–S) and

the weak (TSSP–W) quartz binder sets. The results indicate that

comparing the sequences with the strong and weak binders

does not improve the prediction accuracy. We expect that this

is due to the low similarity score (TSSW–W) of the weak

quartz binder group (Fig. 1A–B) (see Supplementary Material,

Section 4).

3.4 Computational design of new quartz-binding peptides

To demonstrate the predictive power of our approach, we

generated 1 000 000 random sequences (12 000 000 amino acids

total) and calculated their TSS to the experimentally known

strong quartz-binding sequences.

Figure 3 shows the range of the calculated scores for the

sequences and their distributions using the BLOSUM 62, PAM

250 and QUARTZ I scoring matrices. Then, using the cutoff

scores between the strong, moderate and weak binders as

shown in Figure 2, the percentages of having different affinity

groups were calculated. Approximately 6% of the sequences

were predicted to be strong binders using the QUARTZ I

scoring matrix. Given that our false positive rate in identi-

fying strong quartz binders (Fig. 2C) is 2 out of 10, we would

expect that roughly 80% of these sequences are strong quartz

binders.

Our analysis illustrates how our matrices can be used to

design new peptides possessing specific affinities to quartz. We

chose a final set of six strong and four weak predicted quartz

binders based on the consensus of the TSS using all three

scoring matrices (Fig. 4). We emphasize here that at the time of

selection, there was no experimental information available

about these 10 peptides, which are distinct and independent

from any of the other experimentally characterized peptides.

3.5 Experimental validation of computationally designed

quartz-binding peptides

We synthesized the 10 designed peptides and experimentally

evaluated their binding characteristics using a surface plasmon

resonance spectroscopy assay (see Methods section). We

compared the binding affinities of our predicted peptides to

the strongest phage display selected peptide previously

observed, i.e. DS 202 (RLNPPSQMDPPF). Figure 5 shows

that our designed sequences exhibit binding affinities to quartz

as predicted. Four of the peptides, especially S1 that has the

highest score, are much stronger than the DS202, the strongest

quartz binder previously observed (and used as part our

bioinformatics approach). The superior binding is achieved

due to the accumulation of information from different strong

peptides into our scoring matrix and score calculations,

and indicates that our approach can be used to obtain

second-generation peptides with superior functionality.

Further independent experimental studies on these computa-

tionally designed peptides, including immunofluorescence

analysis and gold quantum-dot immobilization on quartz

using biotinylated peptides, extensively verify our design

methodology (Oren et al., 2007).

Fig. 2. Classification of experimentally characterized quartz-binding peptides. The top bar graph shows the peptides ordered based on a decreasing

TSSP–S score calculated using the (A) BLOSUM 62, (B) PAM 250 and (C) QUARTZ I scoring matrices. The corresponding experimentally

determined affinities are shown in the middle bar graphs. The bottom bar graphs show the qualitative (strong (red), moderate (green) and weak

(teal)) correspondence between the predicted and experimental affinities. The QUARTZ I matrix is able to best classify the 39 known experimental

quartz binders according to their affinities.
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3.6 Second generation scoring matrices

The predictive power of scoring matrices is dependent on the
quantity and the quality of the initial data from which the

scoring matrices are generated. We, therefore, expanded our
initial set of 39 quartz binders with the 10 newly designed

sequences and used the QUARTZ I matrix to optimize a new
scoring matrix as described in the Methods section. As
described in Section 3.2, we performed leave-one-out cross-

validation to assess the ability of the new QUARTZ II to
accurately classify the peptides. Figure 6 shows that the

QUARTZ II matrix is slightly better at classifying quartz
binders than the QUARTZ I matrix, particularly for the strong
binders. The new QUARTZ II matrix can then be used to

design more sequences, enabling the accuracy of our approach
to be improved in an iterative fashion.

3.7 Analysis of residue preferences of the

inorganic-binding peptides

We investigated the amino acid distributions in the strong
quartz-binding peptides and compared their relative abundance

to the weak-binding peptides (Fig. 7). Since only a small

number of sequences are available in a given category, position-

independent distributions were compiled and normalized

according to the frequencies used to generate them from the

phage display technique (New England BioLabs Inc., 2006).

Fig. 3. Computational design of new peptides that bind to quartz. The range of similarity scores (left) and their distributions (right) between

the randomly generated sequences and experimentally characterized strong quartz-binding peptides are shown. The peptides are ordered based on

a decreasing TSS score using (A) BLOSUM 62, (B) PAM 250 and (C) QUARTZ I scoring matrices. The corresponding sequence distributions

with respect to the TSS of the peptides are subdivided using the cutoff scores calculated in Figure 2. The sequences with the highest and lowest TSS

are taken to represent the strongest and weakest binders.

Fig. 4. Correlation between the TSS calculated by different scoring

matrices for 1 000 000 peptides. Six strong and four weak predicted bind-

ingsequenceswerechosenbasedontheagreementof theTSS(indicatedby

circles). The sequences of designed strong (S) and weak (W) peptides are

shown on the right and the amino acids are colored according to their

chemical properties (hydrophobic, acidic, basic and polar).
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Based on these preferences (Fig. 7), we speculate that the strong

quartz-binding peptides pack against the inorganic surface and

reduce exposure to water. The peptides also likely have

extended conformations: The bulky hydrophobic side chains

of Tryptophan, Phenylalanine and Methionine in a small

peptide require adequate spacing, and the Proline residue

reduces conformational flexibility. Further, residues that may

allow for collapse of the peptides either directly (through the

formation of salt bridges between oppositely charged amino

acids, disulfide bridges between Cysteines or collapse of the

smaller hydrophobes) or indirectly (Glycine, which increases

conformational flexibility) are underrepresented. Further

investigation using simulation and solid state NMR techniques

are being used to investigate the exact conformational nature of

these peptides and their binding modes.

3.8 The importance of the amino acid composition and

the sequence order

To demonstrate the relative importance of the simple amino

acid composition compared to the sequence, we have also

developed a classifier (see Supplementary Material) based on

only the amino acid composition in strong and weak binder

groups. The comparison of Figure S3 (see Supplementary

Material) with the Figure 2C shows that by using simple amino

acid relative abundances for classification the accuracy of

predicting the strong binders drop from 80 to 50% and also the

discrimination shown in Figure 2C between strong and weak

binders disappears.
The circular dichroism (CD) spectral analysis of the designed

peptides indicates that there are some structural features within

the strong-binding peptides: the strong binders were found to

adopt a polyproline type II conformation, whereas the weak

binders adopt random coil molecular conformation (J.S.Evans,

personal communication).

These two sources of evidence indicate that the simple amino

acid composition provides some information, but it is not

adequate to represent the peptide—inorganic interactions.

The crucial information comes from the sequential arrange-

ment of the amino acid residues in a peptide, which also

inherently contains the amino acid composition.

Fig. 7. Amino acid distributions of the quartz binders. Overrepresented

amino acids in the strong binders are Tryptophan, Phenylalanine and

Methionine, which contain bulky hydrophobic side chains and Proline

which also contains a hydrophobic side chain that reduces conforma-

tional flexibility. Underrepresented amino acids in the strong binders

are the four charged amino acids, the smaller hydrophobes and Glycine

which does not have a side chain (thereby increasing main chain

flexibility). Unlike the weak binders, strong binders do not contain

any Cysteine, which may cause collapse of the binders by forming

disulfide bridges. Based on these preferences, we speculate that the

strong quartz-binding peptides have extended conformations, pack

against the inorganic surface, and reduce exposure to water.

Fig. 5. Experimental validation of computationally designed peptides.

Surface plasmon resonance spectral analysis that measures the amount

of bound peptide versus time was performed at 4 mM concentrations for

six strong (black) and four weak (light gray) designed peptides together

with DS202 (white), the strongest phage display selected peptide.

The higher the shifts in the dip position at a particular time, the

stronger the binding and also the sharper the shift reveals a faster

binding. Our designed peptides all exhibit binding affinities as

predicted, with all but four of our stronger binders demonstrating

equal or higher affinity than the strongest quartz binder previously

observed.

Fig. 6. Performance of the QUARTZ II scoring matrix. The 49

peptides, for which the experimental data are available, were used to

design a new matrix and its performance is compared to the previously

evaluated matrices. The new matrix has the best performance and can

be used to more accurately design quartz binders with more specific

affinities.
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4 CONCLUSIONS

Our computational knowledge-based approach provides a
general and simple methodology to quantitatively classify and

design peptides according to their inorganic-binding properties.
We applied our approach by generating new scoring matrices
for classification and used it to design new peptides capable

of binding specific substrates with predictable affinities.
We experimentally characterized the designed sequences and
showed excellent correspondence between prediction and
experiment. As more experimental data becomes available, we

can iteratively improve our approach to generate new scoring
matrices and further improve the design of new peptides. Our
approach is completely general and may be used to classify and

design novel peptides with any arbitrary functional property,
such as binding to specific organic substrates (DNA, RNA
and other protein), ability to spatially organize quantum dots

and to create hybrid molecular constructs, resulting in a wide
variety of applications in materials science and biology.
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