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An established paradigm in current drug development is
(i) to identify a single protein target whose inhibition is
likely to result in the successful treatment of a disease of
interest; (ii) to assay experimentally large libraries of
small-molecule compounds in vitro and in vivo to identify
promising inhibitors in model systems; and (iii) to deter-
mine whether the findings are extensible to humans.
This complex process, which is largely based on trial and
error, is risk-, time- and cost-intensive. Computational
(virtual) screening of drug-like compounds simul-
taneously against the atomic structures of multiple
protein targets, taking into account protein–inhibitor
dynamics, might help to identify lead inhibitors more
efficiently, particularly for complex drug-resistant dis-
eases. Here we discuss the potential benefits of this
approach, using HIV-1 and Plasmodium falciparum infec-
tions as examples. We propose a virtual drug discovery
‘pipeline’ that will not only identify lead inhibitors effi-
ciently, but also help minimize side-effects and toxicity,
thereby increasing the likelihood of successful therapies.

Promise for a new paradigm in drug discovery
Current therapeutic strategies for several diseases in-
cluding human immunodeficiency virus type 1 (HIV-1)
infection have evolved from an initial single-target treat-
ment to a multitarget one [1]. Single antiretroviral drug
regimens are no longer recommended for clinical use
against HIV-1 owing to the rapid emergence of drug-resist-
ant strains after initiation of therapy [2,3]. A combination
of antiretroviral drugs (see Glossary) targeting different
viral proteins is more effective at suppressing viral growth
[4]. In many cases, however, these regimens are expensive
and result in greater toxicity and in poor patient adherence
[5–7]. New paradigms in multitarget drug discovery have
emerged [8–11], particularly for the treatment of HIV-1
infection [12,13]. For example, the multitarget antiretro-
viral drug Cosalane has been developed to inhibit several
HIV-1 proteins (gp120, integrase, protease and reverse
transcriptase) simultaneously [14–19].

Computational screening of small-molecule compounds
against protein targets implicated in a disease of interest
has been widely used to discover potential inhibitors. This

process typically involves identifying putative hits either by
systematic chemical group perturbations to a compound
already known to inhibit a target, as in quantitative struc-
ture–activity relationships (QSARs), or by ‘docking’ a mol-
ecule froma largedatabase of compounds into the active site
of the threedimensional (3D) structure of a protein target on
the basis of the calculated binding affinity of themolecule to
the target. As the number of high-resolution protein struc-
tures and computer processing capabilities have increased
exponentially in recent years, so computational docking
methods have been used to complement experimental
high-throughput screening (HTS) methods to improve the
efficiency and efficacy of discovering lead inhibitors. In
addition, studies have shown that the success rates of
HTS are increased several fold when compounds are pre-
filtered by computational screening [20–22].

Here we describe a novel methodology with the capacity
to catalyze drug discovery profoundly for all diseases. The
opinion and evidence presented here are largely in the
context of therapeutic targets in infectious disease; how-
ever, this computational multitarget approach can be
readily extended to other complex human diseases such
as cancer that require the inhibition of multiple proteins in
a developmental pathway to be effective.

Summary and advantages of our computational
paradigm
We have developed a new computational paradigm for the
discovery of potential lead inhibitors that is based on a
combination of three tenets (Figure 1) [23].

Opinion

Glossary

Drug: a compound with Food and Drug Administration (FDA) approval for

human use.

Drug-like compound: a compound (including research and experimental

drugs) that has been shown to have physiological activity in at least non-

human in vivo systems.

Hit: a compound that inhibits (or has high binding affinity for) one or more

targets. In our case, the hits are initially virtual – that is, computationally

derived.

Lead: a hit that has been well-characterized experimentally. For example, one

that has been shown to have a high dissociation constant (Kd) for the target of

interest such that the functional activities of the target are decreased on

binding and/or has demonstrated effectiveness of treatment against disease in

an animal model.

Potential lead: a computationally predicted hit that has been shown to work

experimentally against in vitro (cell culture) disease models of the organism.
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(i) Incorporation of protein side chains and main chain
dynamics during the docking process to more
accurately evaluate binding affinities.

(ii) Selection of single inhibitors that bind to multiple
protein targets simultaneously.

(iii) Use of a screening library consisting of drug and drug-
like compounds.

Each tenet increases the probability that a predicted
compound will successfully inhibit the disease; further-
more, screening with drug-like compounds specifically
increases pharmacological viability. Overall, this new
paradigm produces hits that will more expediently and

predictably become lead compounds that can potentially be
developed further into viable drugs for all diseases (see
Supplementary Table S1 online).

Rationale for the use of dynamics

Biologically active proteins are in continuous motion, yet
the majority of protein structure information is limited to
the most stable form of a protein when crystallized in
artificial conditions. The differing conformations of bound
and non-bound crystallographic structures suggest that
binding events and protein motions induce variance in
the dimensions and electrostatics of the catalytic site. It

Figure 1. Comparison of our multitarget inhibitor discovery protocol with currently used traditional approaches. The advantages of using our novel broad-spectrum

multitarget inhibitor discovery protocol (right) against key pathogens and diseases are contrasted with traditional approaches (left). The main differences in our protocol,

corresponding to reasons why it is more effective, are as follows. (i) The use of a docking with molecular dynamics algorithm to take both protein and inhibitor flexibility

completely into account (http://compbio.washington.edu/papers/therapeutics.html). This algorithm is effective because all molecules in biology undergo dynamic or

thermal motion. Traditional rigid-docking approaches do not account for this motion, resulting in poor accuracy in predicting binding energies or inhibitory constants as

compared with our approach. (ii) The use of compounds that bind to multiple targets simultaneously. The most effective drugs in humans (e.g. aspirin or Gleevec)

inevitably interact with and bind to multiple proteins, a feature that traditional models based on single-target drugs fail to take into account. The multitarget approach is a

necessary one because every drug has to be effective at its site of action (e.g. HIV-1 protease inhibitors have to bind and inhibit the protease molecule) and has to be readily

metabolized by the body (e.g. the cytochrome P450 (CYP450) enzymes, which are responsible for metabolizing the majority of drugs) [54]. Computational screening for

multitarget binding and inhibition is effective because it exploits the evolutionary fact that protein structure is conserved much more in nature than is function or sequence.

(iii) The use of FDA-approved and experimental drug and drug-like compounds in the computational screening process. Screening drugs developed for other conditions

against infectious diseases is likely to lead to fewer side-effects because the toxicity, absorption, distribution, metabolism and excretion pharmacokinetics is typically well

established in human and in animal models. To our knowledge, this is the first time that these three elements have been combined to create an effective inhibitor and drug

discovery protocol with predictions that have been experimentally verified to yield highly promising lead inhibitors for further drug development. The computational

aspects of our protocol are fully automated, can be run completely in parallel and require only a fixed initial investment in the number of processors purchased (i.e. the

greater the number of CPUs, the more targets and compounds that can be screened). Our novel protocol is extremely effective and increases success rates downstream in

preclinical and clinical use with a considerable reduction in time, effort and cost expended.
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is likely that, in physiological conditions, an inhibitor will
bind to one of these variant conformations with an affinity
higher than that observed for the artificially stabilized
structure. Thus, dynamics simulations increase the possib-
ility of surveying a physiologically relevant conformation
beyond using the static crystal structure alone.

We perform docking with dynamics by (i) docking the
ligand of interest, (ii) solvating in a water and salt shell,
(iii) applying 100 steps of energy minimization, (iv) simu-
lating protein movement through cycles of random struc-
ture perturbations and (v) selecting the most relaxed of
these models with a knowledge-based scoring function. We
have demonstrated that this dynamic docking method is
successful, as compared with static docking methods, in
targets of two important pathogens, HIV-1 [24–28] and
P. falciparum [23].

Rationale for multitargeting

Functional promiscuity of a given compound, coupled with
structural conservation of active sites and/or binding pock-
ets, enables activity of that compound in multiple proteins,
as indicated by large regulatory systems such as ATP-
facilitated energy transmission [29,30]. This same principle
creates a common susceptibility of proteins involved in
functionsessential to life, creatinganiche formultitargeting
drugs. From a computational perspective, a compound that
is predicted to inhibit multiple targets in a disease has an
additive probability of having pharmacological activity
against that disease.Most importantly, inhibitor resistance
is largely overcome by the exponentially decreased prob-
ability of resistant mutations simultaneously arising in
genes encoding proteins corresponding to all targets [31].

Rationale for use of drug-like compounds

Living organisms have evolved in comparable chemical
environments containing similar sets of organic molecules.
This shared evolutionary chemical context sets the stage
for various organisms to use the same compounds to con-
trol different processes, making one molecule relevant to
diverse physiological activity.

This principle is supported by the evolutionary obser-
vation that structure is much more conserved than
sequence or function. Similar structures with compar-
able active and binding sites but different chemistries
are used to perform a host of diverse functions [32,33].
This observation that structural folds are largely con-
served, even when sequence and function are not, pro-
vides logical evidence that one compound can be an
excellent initial candidate for many different protein
targets.

Example applications of our computational paradigm
We can compare the efficacy of lead compound identifi-
cation by our multitarget computational screening
approach to the traditional experimental HTS and
single-target screening approaches (Figure 1), by using
HIV-1 and its associated opportunistic pathogen infections
and the malarial parasite P. falciparum infection as
examples. As we first describe in this section, several
compounds show simultaneous effectiveness against
HIV-1 and associated opportunistic pathogen infections

and thus are potential multitarget drugs (Table 1). We
then show how our computational multitarget screening
approach can be used to discover effective inhibitors
against the malarial parasite P. falciparum. We argue
that our multitarget approach is likely to result in higher
success rates, in reduced costs and time and in the identi-
fication of new lead inhibitors. Lastly, we describe how our
proposed approach might also be used to minimize side-
effects and toxicity, thereby reducing risk in the drug
discovery pipeline and increasing the likelihood of devel-
oping successful therapies against diseases of interest.

Diseases caused by multiple microorganisms: HIV-1

and AIDS-related opportunistic infections

Traditionally, the treatment of complex diseases such as
acquired immune deficiency syndrome (AIDS) that involve
several microorganisms, especially those with a high
mutation rate, requires a therapeutic regimen based on
several drugs, wherein each drug inhibits a single target in
a particular microorganism. Multidrug regimens have
been successfully used in several studies to treat complex
diseases and to control the emergence of drug-resistant
strains of infectious agents such as HIV-1 [1,4]. The use of
several drugs in treatment regimens, however, typically
causes serious adverse effects and is associated with low
patient adherence owing to toxicity and high costs [5–7].

HIV-1, first discovered in 1981, is a pandemic human
pathogen that has resulted in more than 25 million deaths
caused by AIDS, in which the immune system ceases to
function, leading to life-threatening opportunistic infec-
tions. Individuals infected with HIV-1 need a regimen
consisting of drugs to treat both HIV-1 and opportunistic
infections that arise because of immunosuppression. These
individuals thus present a therapeutic challenge for which
multitarget computational screening might provide an
effective solution, because a regimen consisting of a single
drug that could simultaneously inhibit protein targets
from multiple microorganisms would be ideal for treat-
ment and control of the complex combinations of infectious
diseases present in these individuals.

HIV-1 infection is commonly co-morbid with opportu-
nistic infection by bacterial, fungal, protozomal and viral
pathogens. Pharmacological prophylaxis is available for
several of these pathogens [34]. Cotrimoxazole is a broad-
spectrum antibiotic that is effective at preventing many
opportunistic infections. This drug is both cheap and
widely available [35]; however, it does not inhibit HIV-1
replication. Because HIV-1 infection is a chronic disease
that requires life-long antiretroviral treatment, a new
generation of antiretroviral drugs that simultaneously
control HIV-1 and opportunistic pathogens would benefit
HIV-1-infected individuals, especially those with limited
access to antiretroviral and prophylactic drugs.

Several drugs approved for the treatment of human
diseases other than HIV-1 infection, in addition to other
drug-like compounds, have been shown to inhibit HIV-1
protein targets either in vitro or in vivo (Table 1). These
compounds include drugs developed primarily to treat
Alzheimer’s disease, cancer and infectious diseases caused
by bacteria, fungi, protozoa and viruses. The multitarget-
ing features of these compounds against HIV-1 and its
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opportunistic pathogens have been largely identified by
HTS through serendipity. Computational multitarget
screening using the X-ray diffraction structures of HIV-1
protein targets present in the Protein Data Bank (PDB;
http://www.pdb.org), however, would have helped to
facilitate the rational identification of these multitarget
drugs.

The data in Table 1 provide evidence that one or more
compounds can inhibit infection by multiple bacteria,
fungi, protozoa and viruses, including HIV-1, simul-
taneously. A striking example is the inhibitor KNI-764
(also known as JE-2,164) (Table 1, row 36), which inhibits
both HIV-1 protease and plasmepsin II enzyme from the

malarial parasite Plasmodium malariae (Table 1) [36].
Complexes of both of these targets with KNI-764 have
been solved by X-ray diffraction (PDB identifiers 1msm
and 2anl, respectively); thus, this inhibitor provides strong
evidence for the existence and utility of multitarget drugs,
because the binding mode of a single inhibitor bound to
targets from two very different and destructive pathogens
has been elucidated to atomic detail. Another example is
minocycline (Table 1, row 37), a broad-spectrum antibiotic
that has been shown to possess inhibitory activity against
HIV-1 in vitro (Table 1) [37,38]. Our docking simulations
predict that it inhibits HIV-1 integrase [28], thereby illus-
trating how computational screening methods can be used

Table 1. Compounds with inhibitory activity against HIV-1 and other microorganisms or diseasesa

Drug HIV-1 Other microorganisms or diseases Refs
Target Inhibitory effect (mM) Refs

Amphotericin B Gp41 IC50 >10 [55] Aspergillus fumigatus [56]

Blastomyces dermatitidis [57]

Candida genus [56]

Cryptococcus neoformans [56]

Fusarium species [58]

Hepatitis B virus [59]

Histoplasma capsulatum [60]

Chloroquine Integrase IC50 = 5.14 [61] Cryptococcus neoformans [62]

Reverse transcriptase IC50 >300 [63] Mycobacterium tuberculosis [64]

Tat IC50 <50 [65] Plasmodium berghei [66]

Plasmodium falciparum [67]

Anti-rheumatoid arthritis [68]

Curcumin Integrase IC50 = 30 [69] Anti-Alzheimer [70]

Reverse transcriptase NA [71] Anti-cancer [72]

Tat IC50 <30 [65] Anti-inflammation [73]

Cyclosporin A gag IC50 <1 [74] Candida albicans [75]

Cryptococcus neoformans [76]

Cryptosporidium parvum [77]

Hepatitis C virus [78]

Toxoplasma gondii [79]

Vaccinia virus [80]

Durhamycin A Tat IC50 = 0.0048 [81] Aspergillus fumigatus [82]

Candida albicans [82]

Cryptococcus neoformans [82]

Histoplasma capsulatum [82]

Enviroxime Unknown EC50 >36.5 [83] Coxsackie virus [84]

Human rhinovirus [85]

Polio virus [86]

Fumagillin Vpr EC50 = 0.015 [87] Encephalitozoon cuniculi [88]

Unknown EC50 >0.2 [83] Encephalitozoon intestinalis [89]

Enterocytozoon bieneusi [90]

Plasmodium falciparum [91]

Vittaforma corneae [89]

Hydroxychloroquine Integrase IC50 >100 [61] Plasmodium falciparum [92]

Reverse transcriptase NA [93]

KNI-764 Protease IC50 >0.05 [94] Plasmodium malariae [36]

Minocycline Reverse transcriptase IC50 = 1200 [37] Cryptosporidium parvum [95]

Unknown EC50 <22 [38] Enterococcus faecalis [96]

Enterococcus faecium [96]

Mycobacterium fortuitum [97]

Mycobacterium tuberculosis [98]

Mycoplasma pneumoniae [99]

Staphylococcus aureus [96]

Staphylococcus pyogenes [96]

Streptococcus pneumoniae [96]

Toxoplasma gondii [100]

Suramin gp120 ED50 = 7.7 [101] Cytomegalovirus [102]

Integrase IC50 = 2.4 [103] Herpes simplex virus [104]

Reverse transcriptase IC50 = 1.4 [105] Influenza A virus [106]

Rhinovirus [83]

Sandfly fever virus [107]

Abbreviations: EC50, effective concentration for half-maximum response; ED50, half-maximal effective dose; IC50, half-maximal inhibitory concentration.
aThe data show that one compound can target multiple diseases, including several AIDS-related opportunistic pathogens, simultaneously.
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to identify targets and binding modes of multitarget
inhibitors discovered fortuitously.

Diseases caused by a single microorganism: the

malarial parasite P. falciparum

We previously screened a library of 2344 drug and drug-
like compounds against 14 proteins of the malarial para-
site P. falciparum [23] (see Figure I in Box 1), by using a
computational docking with dynamics protocol that pre-
dicts inhibitors of target protein structures by simul-
taneously considering protein–inhibitor flexibility and
dynamics [24,26]. We have subsequently evaluated exper-
imentally 16 of the top ranking multitarget predictions for
P. falciparum growth inhibition, and five compounds pre-
dicted to have no inhibitory activity were used as nega-
tive predictions. Six (38%) of the sixteen top predictions
had a half-maximal effective dose (ED50) of �1 mM
against either the chloroquine-sensitive or the chloro-
quine-resistant strain of P. falciparum (see Figure Ia
in Box 1). None of the five negative prediction compounds
inhibited P. falciparum growth at the desired level, pro-
ducing an overall prediction accuracy of 52% (11/21; see
Table S1a online).

Two studies using structure-based single-target compu-
tational screening of different libraries of compounds
against two P. falciparum cysteine proteases (falcipain-2
and falcipain-3) have shown low success rates [39,40]. Out
of 355 000 compounds in the Available Chemical Directory
(ACD) database, one study computationally predicted 100
putative inhibitors, of which 1 demonstrated an exper-
imental antimalarial activity of �10 mM in vitro [39].
The second experiment carried out on the same targets
with 241 000 compounds from the ChemBridge database
predicted 84 putative inhibitors, of which 4 demonstrated
an antimalarial activity of �10 mM [39]. The overall suc-
cess of this screening method therefore yields a hit rate of
0.0008% (5/596 000), as compared with a hit rate of 0.3% (6/
2344) at �1 mM activity by computational docking with
dynamics screening of drug-like compounds [23]. Although
36 compounds in total showed an activity of �50 mM
against the predicted target proteins, only 5 worked
against P. falciparum, clearly demonstrating the benefit
of starting with compounds with known biological activity:
namely, these compounds are more likely to find their way
to the site of biological interference.

Two recent experimental HTS studies demonstrate the
increased success of our third tenet: that is, screening with
drug-like compounds [41,42]. However, their experimental
success rates of 0.7–1.7% for identifying inhibitors of
P. falciparum growth points to the advantages of our other
tenets: namely, multitargeting and docking with dynamics.
In the first study, 2687 existing drugs were screened for
P. falciparum growth inhibition and 19 novel antimalarial
compounds with an activity of �1 mM were discovered,
yielding a success rate of 0.7%, although five of these com-
pounds were found to show an activity of �100 nM [41]. In
the second study, 2160 compounds were screened and 36
novel antimalarial compounds with an activity of �1 mM
were found, giving a success rate of 1.7% [42]. Thus, the
experimental success rate (38%) of our multitarget screen-
ing approach represents a significant improvement over the

previous success rates of single-target computational
screening (2.7%) [39,40] and HTS (0.7–1.7%) [41,42].

Multitarget computational screening can also be
applied to predict the potential targets of an inhibitor
identified by HTS but with an unknown mechanism of
action. This application is illustrated in Figure Ib in Box
1, which shows predicted targets for 12 experimental hits
from the two HTS studies [28,41,42]. By our computational
protocols, these hits are predicted to inhibit multiple
P. falciparum targets and generally have low consensus
weighted ranks. These predictions reveal a putative multi-
targeting function for 12 of the best inhibitors found by the
HTS studies.

The high success rates of experiments guided by multi-
target computational screening (38%; Table S1a) can be
coupled with HTS screens to select the compounds to be
followed up in the subsequent time-consuming and costly
further characterization (54%; Table S1b). With our pro-
tocol, a smaller number of experiments will produce better
hits at a fraction of the time, effort and cost that would have
been required to follow protocols based on experimental
HTS and subsequent characterization.

Toxicity and side-effect minimization

Although a multitarget inhibitor is expected to bind to
multiple disease protein targets with high affinity, it might
undesirably inhibit other human proteins, leading to
toxicity (see above sections on rationales). Strategies to
identify and to predict side-effects such as acute toxicity,
mutagenicity and carcinogenicity have been extensively
studied and reviewed [43–49].

In terms of computational screening, a library of either
approved drug and drug-like compounds that have been
evaluated in clinical trials or compounds with known
toxicity profiles can be used to identify initial lead inhibi-
tors, thereby reducing the likelihood of deleterious side-
effects. Additional compounds could be selected from larger
libraries containing synthetic and natural compounds if
the whole library is filtered and categorized into groups
according to their onset and severity of toxicity. The latter
can be accomplished by using data in the TOXNET data-
base (http://toxnet.nlm.nih.gov) [50] or by examining the
absorption, distribution, metabolism and elimination pro-
files of the compounds [51]. Focusing on infectious disease
targets that are not similar to essential proteins in humans
also reduces the likelihood of a toxic reaction.

Toxicity filtering can also be done by structural sim-
ilarity comparison or by a SMILES strings similarity
search [52] between successful lead candidates and com-
pounds with known toxicity profiles. The purpose of cate-
gorizing compounds is to prioritize the experimental
verification of the computational screening results for a
given set of targets or diseases. Compounds with moderate
toxicity could be included in our screening library for
diseases that require short courses of treatment. By con-
trast, the same compounds might be eliminated from our
library for chronic diseases.

Potential side-effects can also be predicted by using
computational multitarget screening to screen lead inhibi-
tors against essential human proteins with known struc-
ture. Lead inhibitors can also be screened against proteins
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involved in human drug metabolism (such as the cyto-
chrome P450 family of enzymes) to ensure their proper
metabolism and to minimize the risk of producing toxic
metabolites.

Comparison of our computational paradigm with
traditional pharmaceutical methods
Although some screens using the latest technologies can
screen up to 50 000 compounds per day, the blind phar-
maceutical approach has severe disadvantages compared
to computational ones. Screening compounds efficiently
against either the target or the organism necessitates
the design of a specific assay, whereas our computational
protocol is completely general and applicable to any target
with an experimentally determined structure or with a
close homolog (>50% sequence identity) of known struc-
ture. Distant homologs can also be used, but docking
accuracy decreases as the sequence similarity decreases.
Furthermore, the pharmaceutical screens do not identify
the targets or binding mode, so any optimization is typi-
cally done in a blind manner. Lastly, large-scale HTS
screens create monumental environmental waste, a pro-
blem that ismostly avoidable in computationalmultitarget
screening.

QSARs correlate chemical structure similarity with
biological activity. This type of approach finds compounds
related to those of known function through pattern recog-
nition of structure and functional groups. Variation in the
catalytic site can limit functional analogy for even tiny
chemical changes made in such pharmacophore-based
screening. Docking simulations such as INVDOCK [53]
resolve these high-resolution challenges by comparing
the electrochemical topography of ligand and target,
thereby avoiding the necessity of starting with a known
active compound and raising the possibility of finding
completely new families of drugs for a disease. Moreover,
our computational docking with dynamics approach
assesses this relationship in physiologically relevantmove-
ments, leading to higher experimental success. The cur-
rent limitations of this method are thought to be the
scoring functions and protein dynamics movements; how-

ever, our scoring functions and dynamics simulations do
increase success rates. Overall, our method can be used
either to discover completely new hits, or in conjunction
with pharmacophore methods such as QSAR to modify a
compound computationally in accordance with medicinal
chemistry rules and to assess immediately the affinity of
the newly designed compound, leading to improved multi-
target selectivity.

In terms of optimization of processing speed, the first
protocol that we developed is rather naive, whereas our
second-generation protocol is capable of screening hun-
dreds of thousands of existing compounds, or designing
new ones computationally on the basis of medicinal chem-
istry rules, on a single central processing unit (CPU) in a
single day. Nonetheless, our current computer cluster can
be arbitrarily scaled to include a larger number of CPUs
and to screen within six hours up to a million compounds
with the first-generation version of our protocol because it
can be run completely in parallel. The cost of such an
installation would be only a few hundred thousand dollars
initially, and it has the advantages of being completely
general (i.e. applicable to any protein target of interest)
and easilymaintained (our ‘farm’ is maintained with<25%
of the time of a single staff member, minimal parts repla-
cements and no cost for screened compounds or reagents).

Conclusion and future directions
Multitarget computational screening using a docking with
dynamics protocol and a drug-like compound library has
the promise to enhance significantly the identification of
lead inhibitors for drug development. This protocol can
identify inhibitors that simultaneously and selectively
bind to multiple targets with high affinity, in contrast to
most drug development strategies that focus on only
single-target inhibition. The efficacy and efficiency of mul-
titarget computational screening have the potential to
reduce time, effort and cost considerably to obtain prom-
ising lead candidates for drug development.

We have provided evidence that multitarget inhibitors
exist for complex diseases, including AIDS that involve
several microorganisms such as HIV-1 and associated

Box 1. Multitargeting predictions

We computationally evaluated the ability of 2344 compounds from

a library of known physiologically active compounds to inhibit a

multitargeting combination of 14 P. falciparum proteins, using a

computational docking with dynamics protocol simultaneously con-

sidering protein–inhibitor flexibility and dynamics [23]. Thirteen of the

potential drug targets were selected because of their known identity

as enzymes necessary for the P. falciparum life cycle and because

high-quality structures were available for these proteins. Another

available P. falciparum protein structure, erythrocyte-binding antigen,

was chosen for its known role in pathogenesis.

The screened compounds were ranked according to the consensus

weighted rank (the average of the ranks of the compound observed in

all simulations divided by the number of proteins predicted to be

inhibited by that compound; the lower the rank, the better the

predicted efficacy), which is a measure of the multitargeting capability

of a compound.

We experimentally evaluated the 16 top ranking compounds from

these predictions, along with five compounds predicted to have no

inhibitory activity as negative predictions. Experimental verification

was performed against the chloroquine-sensitive strain 3D7 and the

chloroquine-resistant strain K1 of P. falciparum cultures. Six of the

sixteen top predictions had an ED50 of �1 mM activity against either

the 3D7 or K1 strain (Figure Ia).

By experimentally screening only 16 predictions from a computa-

tional library of 2344 compounds [23], six lead candidates with

submicromolar antimalarial activity were obtained at a fraction of the

time, effort and cost that would have been required to perform

experimental HTS. Overall, the experimental success rate of �38% for

the multitarget computational screening is significantly higher than

the rates of 0.7–1.7% produced by the two experimental HTS studies

for identifying antimalarial inhibitors [41,42].

In addition, we compared the multitarget computational screening

predictions to the two experimental HTS studies to discover potential

targets of P. falciparum growth inhibitors [41,42]. Twelve of the

compounds for which experimental inhibition values were provided

and were considered by the HTS screening studies to be valid

antimalarial hits are predicted to inhibit multiple proteins (Figure Ib).

This application of multitarget computational screening is therefore

useful in prioritizing targets for further study, for compounds with

unknown inhibitory mechanisms.
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opportunistic pathogen infections, and that these lead
compounds are excellent starting points for further
chemical modification to improve potency and specificity
against targets of interest. We have also demonstrated
that computationally predicted multitarget antimalarial

inhibitors show high potency at inhibiting P. falciparum
growth in vitro with a success rate higher than that of
single-target computational screening and experimental
HTS. The onset of drug resistance, a considerable pro-
blem in both HIV-1 and P. falciparum infection, might

Figure I. Multitargeting predictions for 18 antimalarial compounds. (a) Six compounds predicted for multitargeting by our computational screening study [23] that were

subsequently verified for experimental antimalarial activity (see supplementary material). (b) Twelve compounds selected for antimalarial activity by two HTS studies

were subsequently predicted computationally as multitargeting [41,42]. Shown for each compound are their predicted inhibitory constants against each of 14

P. falciparum proteins (shaded boxes; dark brown indicates highest inhibition) and the total number of proteins predicted to be inhibited. Some proteins have inhibitors

in the mid-picomolar range (e.g. Glutathione reductase) but others have predicted inhibitors in the micromolar range (e.g. 1-Cys peridoxin). Our predictions indicate that

a compound such as U-74389G is more likely to inhibit Glutathione reductase and Lactate dehydrogenase (all picomolar inhibitory constants) than 1-Cys peridoxin,

Dihydrofolate reductase, Glutathione-s-transferase, Protein kinase-5, S-Adenosyl-L- homocysteine hydrolase or Thymidylate synthase (micromolar to nanomolar

inhibitory constants). Predicted inhibitory constants from docking with dynamics simulations reflect hypothetical local concentrations, such that a given compound will

inhibit its target at the predicted concentration in a simple in vitro experiment, but the whole organism might require different concentrations for toxicity.
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be significantly delayed by inhibiting multiple targets
simultaneously.

An important application of multitarget computational
screening is in identification of the potential targets of a
drug with an unknown inhibitory mechanism. Starting
with drug and drug-like compounds that are well charac-
terized in terms of their pharmacological properties will
increase the probability that an identified lead will be
successful as a drug further down the development pipe-
line. Modification of lead compounds using medicinal
chemistry rules can be performed computationally. Screen-
ing for side-effects against essential human proteins (a
chief focus in structure determination; many such struc-
tures are available) can also be performed computationally
to refine potential candidates, and screening against
important human enzymes involved in eliminating drugs
from the body can help to ensure proper metabolism with-
out a build-up of toxic metabolites.

Developing a comprehensive computational pipeline
that integrates the concepts described here not only will
lead to the discovery of new inhibitors but also has the
potential to facilitate significant advances in the efficacy
and efficiency of the whole process of drug discovery and
development, from in vitro and in vivo preclinial studies to
clinical trials.
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