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Scoring Functions for De Novo Protein Structure
Prediction Revisited

Shing-Chung Ngan, Ling-Hong Hung, Tianyun Liu, and Ram Samudrala

Summary
De novo protein structure prediction methods attempt to predict tertiary structures from

sequences based on general principles that govern protein folding energetics and/or statistical
tendencies of conformational features that native structures acquire, without the use of explicit
templates. A general paradigm for de novo prediction involves sampling the conformational
space, guided by scoring functions and other sequence-dependent biases, such that a large set of
candidate (“decoy”) structures are generated, and then selecting native-like conformations from
those decoys using scoring functions as well as conformer clustering. High-resolution refinement
is sometimes used as a final step to fine-tune native-like structures. There are two major classes of
scoring functions. Physics-based functions are based on mathematical models describing aspects
of the known physics of molecular interaction. Knowledge-based functions are formed with
statistical models capturing aspects of the properties of native protein conformations. We discuss
the implementation and use of some of the scoring functions from these two classes for de novo
structure prediction in this chapter.

Key Words: De novo; physics-based; knowledge-based; potential; protein folding.

1. Introduction
The success of large-scale genome sequencing efforts has spurred structural

genomic initiatives, with the goal of determining as many protein folds as
possible (1–4). At present, structural determination by crystallography and
nuclear magnetic resonance (NMR) techniques are still slow and expensive
in terms of manpower and resources, despite attempts to automate the

From: Methods in Molecular Biology, vol. 413: Protein Structure Prediction, Second Edition
Edited by: M. Zaki and C. Bystroff © Humana Press Inc., Totowa, NJ

241



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Book_Zaki & Bystroff_1588297527_Proof1_May 9, 2007

242 Ngan et al.

processes. Computational structure prediction algorithms, while not providing
the accuracy of the traditional techniques, are extremely quick and inexpensive
and can provide useful low-resolution data for structure comparisons (5). Given
the immense number of structures that the structural genomic projects are
attempting to solve, there would be a considerable gain even if the computa-
tional structural prediction approach were applicable only to a subset of proteins.

Most current research in protein structure prediction is based on Anfinsen’s
thermodynamic hypothesis that the native structure of a protein can be deter-
mined entirely from its amino acid sequence (6). The two main categories of
methods for predicting protein structure from sequence are comparative and de
novo modeling. In the comparative modeling category, the methodologies rely
on the presence of one or more evolutionarily related template protein structures
that are used to construct a model. Traditionally, the evolutionary relationship
can be deduced from sequence similarity (7–9) or by “threading” a sequence
against a library of structures and selecting the best match (10,11). However,
because of the improved sensitivity of the sequence similarity based methods,
the threading approach has essentially been supplanted (12,13). In the de novo
category, structure prediction methods attempt to predict tertiary structures from
sequences based on general principles that govern protein-folding energetics
and/or statistical tendencies of conformational features that native structures
acquire, without the use of explicit templates (14–16). A general paradigm for de
novo structure prediction involves sampling the conformational space, guided
with scoring functions and other sequence-dependent biases, such that a large
set of candidate (“decoy”) structures are generated, and then selecting native-
like conformations from those decoys using scoring functions and conformer
clustering as filters (17,18). As a final step, detailed energy potentials are
sometimes employed to perform high-resolution refinement on these native-like
structures. Although the first papers on protein structure prediction appeared
some thirty years ago, de novo structure prediction remains a difficult challenge
today (12,13,19–21).

Scoring functions are employed in all stages of de novo structure prediction.
For the conformational search stage, a selected combination of scoring functions
approximates the energy landscape of the protein conformational space.
Search methodologies such as Monte Carlo simulated annealing (MCSA) and
molecular dynamics (MD) then generate trajectories leading to the minima of
the landscape. As the conformational search process needs to evaluate new
conformations encountered at every step, it is computationally intensive, and
the scoring functions used in this stage need to be computationally efficient.
Because none of the existing scoring functions can faithfully reproduce the



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Book_Zaki & Bystroff_1588297527_Proof1_May 9, 2007

Scoring Functions for De Novo Protein Structure Prediction Revisited 243

true energy landscape of the conformational space, the search process often
leads to many false minima. Thus, one usually repeats the search process many
times with many different starting conditions and random seeds and obtains a
collection of candidate (“decoy”) structures. Then, a second set of (possibly
different) scoring functions are used in the decoy selection stage as filter
to eliminate non-native structures and retain the native-like ones. Conformer
clustering is often used as an additional step to further refine the collection
of the native-like conformations, followed by high-resolution refinement of
the few remaining candidate structures. Compared to the functions used in the
conformational search stage, the functions employed in the decoy selection
stage can be algorithmically more complex and more detailed, because the
number of candidate conformations to evaluate is much less than the number of
conformations encountered during the search process. Scoring functions used
in the high-resolution refinement stage are usually computational expensive
functions formulated from detailed mathematical models of short-range interac-
tions among atoms, allowing small local perturbations to fine-tune native-like
structures.

There are two broad classes of scoring functions. The first class of functions
are largely based on some aspects of the known physics of molecular inter-
action, such as the Van der Waals force, electrostatics, and the bending and
torsional forces, to determine the energy of a particular conformation (22–27).
The second class of functions is knowledge-based. Each of these knowledge-
based functions tries to capture some aspects of the properties of protein native
conformations, for example, the tendencies of certain residues to form contact
with one another or with the solvent. These knowledge-based functions are
usually compiled based on the statistics of a database of experimentally deter-
mined protein structures (28–34). In essence, the physics-based functions aim at
predicting the native structure of a given sequence by mimicking the energetics
of protein folding, whereas the knowledge-based functions bypass this inter-
mediate step by directly making statistical inferences on what are observed in
the database. Thus, the accuracy of the physics-based functions is determined
by how realistic the underlying physical models are, whereas the accuracy of
the knowledge-based functions is determined by the quality of the database as
well as the validity of the statistical assumptions.

In an earlier edition, we introduced scoring functions for de novo structure
prediction (35). In this chapter, we revisit physics-based and knowledge-based
scoring functions in the context of their roles in the current state of the art
structure prediction efforts. For the physics-based approach, the often-called
Class I force field, which is a common foundation among the widely used
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molecular modeling force fields such as AMBER, CHARMM, OPLS, and
ENCAD, is discussed. Extensions to this force field and the role of modeling
solvent effects are also described. For the knowledge-based approach, we
study the Bayesian (conditional) probability formalism, using it to derive
the all-atom distance-dependent conditional probability discriminatory function
(RAPDF) (34). As an additional illustration, we delineate how one can combine
the Bayesian probability formalism with the neural network methodology to
construct neural network-based scoring functions. Then, a few other novel
knowledge-based scoring functions from the recent literature are highlighted.
Although it is not strictly a physics- or knowledge-based methodology, we
briefly discuss the use of conformer clustering to further enhance decoy
selection, as this technique has been shown to be useful in de novo structure
prediction. Finally, a sophisticated combined physics- and knowledge-based
potential used for high-resolution refinement is described.

2. Theoretical Background and Methods
2.1. An Overview of Physics-Based Energy Functions

Using quantum mechanical techniques, highly accurate energies can be
calculated for small organic and inorganic molecules (36,37). However, because
of their sizes and flexibility as well as the presence of solvent molecules,
proteins are much more difficult systems to model. The polar aqueous
environment vastly complicates the calculation of the electrostatic energies. For
instance, although there is no dispute that the largest driving force for protein
folding is the hydrophobic effect (38,39), which is associated with the decrease
of water entropy upon the solvation of non-polar groups, the exact structural
configuration of water molecules hydrating the solute remains unknown.

Although a full quantum mechanical treatment for a complete protein is not
feasible, approximations and simplifications can be made to derive empirical
physics-based energies. For example, hydrogen bond geometries that are appli-
cable to those found in proteins can be determined from quantum mechanical
calculations of simple systems (40). Electrostatics calculations can be approx-
imated using classical point charges and modifying the dielectric constant to
approximate the polarizability of the protein and the solvent. Van der Waals
interactions are often approximated by Lennard–Jones potentials. The first use
of these approximate functions was in MD simulations, where fast and easily
calculated energies were required to determine the force fields. Some proto-
types for these types of energies are AMBER (41), CHARMM (42), OPLS (24),
and ENCAD (43). Parameters for these energies have been obtained by fitting
equations and results of computer simulations to data from experiments and
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from quantum mechanical calculations. These physics-based energies perform
adequately for perturbations around a known native conformation (44,45),
because the electrostatic and solvent-dependent information is implicit in the
initial conformation itself. In combination with experimental NMR constraints
(46,47), these force fields enable the determination of accurate structures,
so long as there are enough constraints to define the fold. Unfortunately, in
isolation, the solvent and electrostatic modeling is insufficient for full and
reliable simulation of protein folding. As a result, producing accurate protein
folding simulations from physics-based energies alone is still a very challenging
and active area of research.

2.1.1. Class I Physics-Based Scoring Function and Its Possible Extensions

As we have mentioned, AMBER (41), CHARMM (42), OPLS (24), and
ENCAD (43) are some examples of the widely used physics-based force fields
in protein-folding simulation. These force fields share a lot of commonalities
in terms of the underlying physical models used and the mathematical approx-
imations assumed. As an illustration, the AMBER force field, which was first
developed under the direction of Professor Peter Kollman, has the following
form:

Vtotal = Vbond+Vangle+Vtorsion+Vnon-bond (1)

Here, Vtotal is the total potential energy, Vbond is the bond stretching energy,
Vangle the angle bending energy, and Vtorsion the angle torsional energy. Together,
Vbond, Vangle, and Vtorsion are denoted as the bonded interactions terms. Vnon-bond is
the energy for non-bonded interactions, consisting of a Van der Waals energy
term VvdW and an electrostatics term Velec. Other widely used force fields such
as CHARMM and OPLS employ similar bonded and non-bonded terms in their
formulations, and Eq. 1 is often denoted as the Class I force field.

The bond-stretching energy (see Fig. 1A) is modeled by treating the bond
as an idealized spring and using a simple quadratic function derivable from the
Hooke’s law.

Vbond = kbond!r− ro"
2 (2)

where kbond is the bond-stretching constant, controlling the stiffness of the bond
spring, and !r–ro" is the deviation of the bond length from its equilibrium
distance. Unique numerical values for kbond and ro are assigned each pair of
atom types.
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Fig. 1. The physical models for the AMBER molecular mechanics force field. Atoms
and bonds are shown. (A) The physical model for bond stretching, (B) the model
for angle bending, (C) the model for angle torsional energy, and (D) the model for
electrostatics and Van der Waals forces.

The angle bending energy (see Fig. 1B) is similarly modeled by the Hooke’s
law.

Vangle = kangle!#−#o"2 (3)

where kangle is the angle bending constant, controlling the stiffness of the angle
spring. # is the angle formed by the atom of interest with its two covalently
bonded neighbors, and !#−#o" is the deviation of the angle from its equilibrium
value in radians. Again, unique values for kangle and #o are determined for each
bonded triplet of atom types.

The torsional energy (seeFig. 1C) is representedbyann-foldperiodic function:

Vtorsion =
1
2
ktorsion $1+ cos!n%−%0"& (4)

Here, the torsional angle % is the dihedral angle defined by a quartet of
bonded atoms, and %0 is the reference angle. ktorsion is a constant for the
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n-fold periodic interaction. n represents the periodicity of the torsional barrier,
reflecting the intrinsic symmetry in the dihedral angle for the quartet of the
bonded atoms. Unique values of ktorsion, n, and %0 are assigned to each bonded
quartet of atom types. In practice, parameterization of torsional energies also
corrects for bonding energy terms unaccounted for by the simple bending and
stretching models. Additional torsional energy terms (denoted as “improper
torsions” in the literature) can be added to ensure that subtle properties such as
chirality and planarity are preserved.

For the non-bonded interactions, AMBER and other commonly used force
fields employ a 6–12 Lennard–Jones potential to represent the Van der Waals
interactions between two non-bonded atoms, and the Coulomb’s law to model
the interactions of two charged atoms (see Fig. 1D):

Vnon-bond =
(
Aij

r12ij
− Bij

r6ij

)

+
(
qiqj
'rij

)
(5)

The Van der Waals interaction consists of two components, a short-range
attractive force that quickly vanishes when the distance between the interacting
atoms, rij , is greater than a few Angstrom and an even shorter-range repulsive
force that dominates when rij is less than the sum of their individual atomic
radii. Bij and Aij in Eq. 5 control the attractive and the repulsive compo-
nents of the steric potential. Aij can be calculated from quantum mechanics
considerations or measured from atomic polarizability experiments, and Bij

can be calculated from crystallographic data. For the eletrostatics, interacting
atoms are treated as point charges of qi and qj . The value of the dielectric
constant ' accounts for the attenuation of electrostatic interaction by the polar
environment. In more sophisticated solvent models, which are discussed later,
the constant ' is replaced by a function dependent on rij . Earlier versions of
AMBER had an explicit term to take into account hydrogen bonding. The latest
versions incorporate hydrogen-bonding effects into the parameterization of the
electrostatic and van der Waals terms, as these two terms are found to be able to
sufficiently represent the distance and angle dependencies of hydrogen bonds
in molecular mechanics modeling (48).

Currently, except in the high-resolution refinement stage, idealized backbone
and side-chain bond lengths and angles are often used in de novo structure
prediction. Hence, the energy associated with the bonded interactions terms
Vbond, Vangle, and Vtorsion can be regarded as constant. Improvement in structure
prediction can conceivably be achieved by enhancing the physical models for
the non-bonded terms. For example, one can replace the Van der Waals terms
in Eq. 5 by a buffered 14–7 potential (49,50), by the Morse function (51),
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or by the Buckingham–Fowler potential (52). The goal is to reduce the Pauli
exclusion barrier so as to allow sufficient sampling of conformations in the
neighborhood of the native structure during molecular mechanics or Monte
Carlo simulations.

For the electrostatic term, the physical model of fixed charges at atom
centers is found to be insufficient to describe charge polarization in the aqueous
environment. Examples of the more sophisticated electrostatics models involve
generalizing the point charge model with multi-center multi-pole expansion.
This can be done through the cumulative atomic multi-pole moment method,
the distributed multi-pole analysis, or an atoms-in-molecules-based multi-pole
moment method (53–55). Even though these types of model improvement
are computationally expensive, several groups have been making significant
progress in incorporating polarizable force fields for MD simulation of proteins.
For example, see refs. 56–58.

2.1.2. Protein Structures in Aqueous Environment

Protein structures are formed in the presence of aqueous environment, and
therefore, in order for the search of energy-minimized protein conformation
to be accurate, the effect of the solvent must be taken into account. Explicit
solvent models that simulate individual water molecules [for example, TIPS
(59,60), SPC (61), and F3C (62)] are too slow to be practicable for protein
structure prediction. Truncation of the non-bonded potentials such that interac-
tions beyond a fixed cutoff distance are ignored can improve speed. However,
it often leads to undesirable artifacts and reduced accuracy (63). Combining
Ewald’s approach with fast Fourier transform, Darden and his colleagues have
developed the particle mesh Ewald method to describe long-range interac-
tions more efficiently (64). However, direct simulation with explicit water is
still highly computational expensive even with this and other advances. On
the contrary, the effect of solvation can be modeled implicitly by averaging
solvent-solute interaction using mean field formulation and by decomposing
the solvation energy into an electrostatic component and a so-called non-polar
component, which accounts for everything else. For electrostatics, Poisson–
Boltzmann (65,66) models extend the simple Coulombic potential by allowing
charge distributions within the solute and having separate dielectrics for the
solvent and solute. Unfortunately, there are no general analytical solutions
for the Poisson–Boltzmann equation for irregular protein shapes and precise
numerical solutions (for example, by finite differences using GRASP/Delphi
(67)) can be very computationally expensive. Faster solutions can be obtained
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using generalized-Born (GB) approximations (68), which have been incorpo-
rated into MD simulations. For the non-polar term, which includes hydrophobic
interactions, the energy is usually modeled as a simple linear function of
solvent accessible area. The resulting generalized-Born/surface-area (GBSA)
models are more accurate than the simple non-bonded interaction terms and
can rival knowledge-based functions for scoring small loops in accuracy (69).
However, the amount of parameterization involved in GBSA models also rivals
that of knowledge-based energies. Recently, other approximate methods for
solving the Poisson–Boltzman equation may prove to be as or more accurate
with less parameterization (70). Besides the Poisson–Boltzmann and gener-
alized Born-type approaches, another category of implicit models describes the
solvent effect in terms of the dielectric screening of electrostatic interaction
within the protein molecule. For example, this can be done by defining the
dielectric coefficient as a simple function of distance (71,72) and as a more
detailed function involving solvent-excluded volume (73), the distance of a
charge from the protein surface, and the degree of exposure of a charge point
to the solvent (74).

In summary, the implicit solvent models are computationally much more
efficient than the explicit models. The tradeoff is the inability to represent
the detailed interaction structures between the solvent and the solute, which
can be essential in determining the overall energy landscape. Furthermore, the
lack of polarizability in the continuum solvent treatments precludes a flexible
description of charge distributions in the aqueous environment.

2.2. An Overview of the Knowledge-Based Scoring Functions

The physics-based functions are formulated from underlying approximate
physical models. In contrast, knowledge-based functions are derivable directly
from properties observed in known folded proteins (75). Although the basis of
the knowledge-based propensities is still physical, the statistical “black-box”
approach to the weighting of physical effects has proved to be more effective
than explicitly specifying the form and calculating the coefficients in traditional
physics-based energies. As a result, almost all of the most successful de novo
structure prediction techniques have both physics-based and knowledge-based
components.

The hydrophobic moment (76) is an example of a simple heuristic energy
function. It is analogous to the physical moment of inertia except that the
mass term is replaced by a measure of the hydrophobicity of the residue.
Minimization of this function leads to compact structures with hydrophobic
residues in the core. In general, any property that is differentially observed in
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folded proteins and unfolded proteins can be converted into an energy function.
Hidden Markov models (HMM), neural nets, support vector machines (SVM),
and trial and error have been used to find such properties. A particularly
useful class of knowledge-based functions is the pairwise distance preferences
(11,34,77), which reflect proper packing. Consequently, the pairwise distance
preference scoring functions can be found in many of the top-performing de
novo methods, for example, ROSETTA (16), FRAGFOLD (78), TASSER (79),
CABS (80), and PROTINFO (81).

2.2.1. Deriving Knowledge-Based Scoring Functions from the Bayesian
Probability Formalism

A majority of the knowledge-based scoring functions have their theoretical
foundations rooted in the Bayesian (conditional) probability formalism. In such
a formalism, we view a given set of conformations for a protein sequence as
comprising a subset of correct conformations {C} and a subset of incorrect
conformations {I}. Furthermore, we consider a set of conformational properties,
which can be any feature of protein structure that differs significantly between
the subset of incorrect conformations and the subset of correct conformations.
Examples are the preferences of some amino acid subsequences to exhibit
certain torsion angles, to form contacts with other amino acid types, and so on.
In this subheading, for the purpose of illustration, we focus on the set of inter-
atomic distances within a structure (dij

ab), where dij
ab is the distance between

atoms numbers i and j, of type a and b. We want to determine P!C"(dij
ab)", the

probability that the structure is a member of the “correct” subset, given that
it contains the distances (dij

ab). A standard way to achieve this is to express
P!C"(dij

ab)" in terms of probabilities derivable from experimental structures,
through the Bayes’ theorem:

P!C"(dij
ab)"= P!C"× P!(dij

ab)"C"
P!(dij

ab)"
(6)

Here, P!(dij
ab)"C" is the probability of observing the set of distances (dij

ab)
in a correct structure. P!(dij

ab)" is the probability of observing such a set of
distances in any correct or incorrect structure, and P!C" is the probability that
any structure picked at random belongs to the correct subset. P!(dij

ab)"C" is
regarded as a posterior probability in the sense that the underlying population
for the probability distribution consists of structures that are already known
to belong to the “correct” subset. On the contrary, P!(dij

ab)" is regarded as a
prior probability in the sense that its underlying population is composed of
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structures whose class memberships have not yet been determined. We should
note that both P!(dij

ab)"C" and P!(dij
ab)" are highly difficult to compute, because

the input arguments to these probability functions are the multitude of distance
variables. A full model capturing the dependency among these variables would
be extremely complex and would require a huge amount of training data to
determine all the implicit parameters. Hence, to ensure computational feasibility
of Eq. 6, one often makes the simplifying, albeit not strictly correct, assumption
that the distances are statistically independent of one another, that is:

P!(dij
ab)"C"=

∏

i*j

P!dij
ab"C"+P!(dij

ab)"=
∏

i*j

P!dij
ab" (7)

Then, combining Eqs. 6 and 7 gives us

P!C"(dij
ab)"= P!C"

∏

i*j

P!dij
ab"C"

P!dij
ab"

(8)

For a given protein sequence, P!C" is a constant independent of conformation
and therefore can be omitted because we are only interested in selecting native-
like conformations among decoys for a fixed protein sequence. Equation 8
suggests a scoring function S, which is proportional to the negative log
conditional probability that the given structure is correct, given a set of
distances.

S!(dij
ab)"=

∑

i*j

s!dij
ab" + s!d

ij
ab"=− log

(
P!dij

ab"C"
P!dij

ab"

)

(9)

An advantage of using Eq. 9 instead of Eq. 8 as a scoring function is that
in the logarithm form, the pitfall of repeated multiplication of small numbers
is eliminated, and therefore, it is easier to be implemented on the computer.

One can replace the set of distances (dij
ab) with another type of conforma-

tional property, say for example (mi
a), where mi

a represents the value of that
conformational property attained by residue number i of amino acid type a.
This leads to another scoring function:

S!(mk)"=−
∑

k

log
(
P!mk"C"
P!mk"

)
(10)

To gain an intuitive understanding of the scoring function, we note that if the
chosen conformational property does not differ significantly between the subset
of incorrect conformations and the subset of correct conformations, then the
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values of P!mk"C" and P!mk" will tend to be close to each other. The resulting
score S will always be close to 0 and is not an informative measure for decoy
discrimination. On the contrary, if the conformational property is well chosen,
that is, it differs significantly between incorrect and correct conformations, then
for a native-like structure, P!mk"C" will tend to dominate P!mk", yielding a
negative (good) score for S. On the contrary, for a non-native structure, the
opposite occurs, yielding a positive (bad) score.

2.2.2. Compilation of the Probabilities

Before one can use Eq. 9 as a scoring function, the statistics for the posterior
probability P!dij

ab"C" and the prior probability P!dij
ab" need to be compiled.

To compile the statistics for P!dij
ab"C", we can tabulate the intra-molecular

distances observed in a database of experimentally determined conformations.
Such a database is usually extracted from the Protein Data Bank (PDB) (82,83).
For example, one can proceed to select all the proteins from the PDB that also
appear in the e-value filtered ASTRAL SCOP genetic domain sequence subset
list with the threshold e-value set at 10−4 (84). Such an e-value is chosen,
so that sampling bias (i.e., including too many homologous proteins) can be
avoided. We then evaluate the quantity

P!dij
ab"C"≡

N!dab"∑
d
N!dab"

(11)

where N!dab" is the number of occurrences of atom types a and b in a distance
bin d in the database.

To compile the statistics of the prior probability P!dij
ab", we apply a formula

similar to Eq. 11. But the question is: What would be an appropriate database
from which to tabulate the counts? Samudrala and Moult (34) argued that
methods employed for structure prediction usually produce compact models,
whether the result is topologically correct or not. Thus, they consider a good
choice of prior distribution to be found in the set of possible compact confor-
mations and assume that averaging over different atom types in experimental
conformations is an adequate representation of random arrangements of these
atom types in any compact conformation. The probability P!dab" of finding
atom types a and b in a distance bin d in any native-like or non-native compact
conformation is thus approximated by:

P!dab"=

∑
ab
N!dab"

∑
d

∑
ab
N!dab"

(12)
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where
∑
ab
N!dab" is the total number of contacts between all pairs of atom

types in a particular distance bin d, and the denominator is the total number of
contacts between all pairs of atom types summed over the distance bins d. The
pairwise distance preference function described in Subheading 2.2.1., Eq. 9,
together with Eq. 11 and the prior distribution assumption of Eq. 12, is termed
the RAPDF in (34). Figure 2A highlights the essential components of this
scoring function.

Besides the above method of estimating prior distributions, various other
approaches have also been suggested. Subramaniam et al. (85) assumed that all
distances are equally probable, and Avbelj and Moult (86) considered the set of
distances observed in some random coil model as appropriate. Lu and Skolnick
(87) employed a quasi-chemical approximation. Alternatively, Zhou and Zhou
(88) assumed that the residues follow uniform distribution everywhere in the
protein and developed a new reference state termed “distance-scaled, finite
ideal-gas reference state.”

2.2.3. A Pairwise Distance Scoring Function in Continuous Form

The RAPDF scoring function uses discrete distance bins to compile the
probability scores. Specifically, contact distances between 0 and 3Å are
grouped into bin 1, 3 and 4Å into bin 2, 4 and 5Å into bin 3, and so on up to
the 20Å cutoff. As a result, the score for observing any distance within a bin
width is the same for a given pair of atom types. However, the distance prefer-
ences between atom types should vary in a continuous manner as the distances
between the contacts vary. We can seek a function to interpolate between the
scores across the discrete bins such that the score for a given distance can be
uniquely defined. Several methods for interpolating discrete points, including
linear, polynomial, cubic spline, and band-limited interpolations, have been
tested for their efficacy to improve the discriminatory power of RAPDF. The
best among the tested methods is band-limited interpolation, derivable from
the Fourier Theorems. It assumes that the variation of the log-likelihood scores
fluctuates slowly enough such that the scores for any given distance can be
exactly reconstructed from the scores across the discrete bins.

Given a pair of atom types a and b at a particular distance, a “continuous” log-
likelihood score sc!dab" can be calculated by interpolating between the scores
across the discrete bins of s!dab" through the Shannon’s sampling theorem,
resulting in a smooth curve (89). (see Fig. 2B for illustration.) Given an amino
acid sequence in a particular conformation, sc!dab" of all contacts between pairs
of atom types at any distance within the 20Å cutoff is summed to yield the total
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Fig. 2. The all-atom distance-dependent conditional probability discriminatory
function (RAPDF) and its extension, the interpolated RAPDF function. (A) The
essential feature of the RAPDF scoring function. A matrix giving the log-likelihood
scores for pairwise contact among different atom types at various discrete distance bins
is computed using a database of known experimental structures. Then, given a candidate
(“decoy”) structure, appropriate entries in the matrix can be extracted and summed
to give a log-likelihood score for the structure. (B) The application of band-limited
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log-likelihood score to evaluate whether the conformation is native-like or not.
The interpolated RAPDF (IRAPDF) has been evaluated by various decoy sets.
Comparison between the IRAPDF and the RAPDF shows that the band-limited
interpolation leads to an improved discriminatory power.

2.3. Neural Network Knowledge-Based Scoring Functions

Rather than predicting whether an entire structure is native-like or not, neural
network algorithms are often used to predict the likelihood of occurrence of a
certain conformational property for each residue along a given protein sequence.
Examples of the properties are the tendencies of an amino acid to be exposed
or buried relative to the solvent (90–92), to be part of the helix, strand, or
coil local structures (93–95), the expected number of contacts a residue makes
with other residues (96–99), and so on. Usually, the conformational property of
interest is discretized into a number of states, and a neural network algorithm
returns numerical values which correlate with the probabilities of occurrences
of those states.

One can combine the neural network algorithms for predicting conforma-
tional properties with the Bayesian probability formalism that has been used to
construct various knowledge-based functions. This leads to a class of scoring
functions that give log-odd scores, indicating whether a given structure is
native-like or not, and that have in their core a neural network component.
In the following subheadings, we review a standard formulation of the neural
network algorithm that is used to predict conformational properties of residues
in a protein sequence. We then describe how the neural network and the
Bayesian frameworks are combined to form several neural network-based
scoring functions.

2.3.1. Neural Network Algorithms for Predicting Local Structures

For concreteness, we consider the prediction of the degree of solvent
accessibility of individual residues along a given protein sequence, with the
degree discretized into three states: low, medium, and high. The now standard
approach, introduced in ref. 93 and improved upon in ref. 94, uses a feed-
forward neural network. The input to the network is a window of sequence

!
Fig. 2. interpolation to the discrete distance bins of the RAPDF function. The score

sc!dab" of a given pair of atom types at any distance within the 20Å cutoff can be
uniquely defined by interpolating across the discrete bins of s!dab". The resulting
scoring function is termed as the interpolated RAPDF (IRAPDF).
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profile corresponding to a consecutive sequence of residues. Such a windowed
sequence profile can be obtained by following a procedure described in ref.
94. The protein sequence of interest is employed as input to PSI-BLAST (100),
which generates a position-specific scoring matrix (PSSM) associated with that
sequence. The PSSM consists of 20 × M entries, where M being the length of
the sequence, and each entry in a column gives the log-likelihood for one of the
twenty possible amino acid substitutions for the residue position of interest. The
standard logistic transform is then applied to each entry of the PSSM, so that
these values are rescaled to the 0–1 range, appropriate to serve as neural network
inputs. The neural network itself can consist of one or more hidden layers, and
its output layer comprises three output units, representing the low, medium, and
high solvent accessibility states, respectively. Training of the network is done
with back-propagation (101), using the database of experimentally determined
protein structures we have already described in Subheading 2.2.2. Given a
window of sequence profile of the residue of interest (i.e., the sequence profile
of the residue as well as those of the neighboring residues), the resulting neural
network returns a numerical value in each output unit correlating with the
probability with which the residue assumes the corresponding state.

2.3.2. Combining the Neural Network Algorithms with the Bayesian
Probability Formalism

To describe how one combines the Bayesian and the neural network frame-
works to construct new scoring functions, for concreteness, suppose once again
that the conformational property of interest is the degree of solvent accessi-
bility. Using the language of the preceding subheadings, we want to calculate
the probability that a given structure belongs to the subset of correct structures,
given the associated conformational string (qi

a). Here, q
i
a ∈ (l*m*h), where

l represents low solvent accessibility state, m medium, and h high, i is the
residue number, and a is the amino acid type. A scoring function described in
Eq. 10 now takes the following form:

S!(qi
a)"=−

∑

i

log
[
P!qi

a"C"
P!qi

a"

]
(13)

P!qi
a"C" is simply the (posterior) probability of residue i taking on a particular

solvent accessibility state qi
a in a native structure. With an additional processing

step involving the nearest-neighbor approach of Yi and Lander (102) to be
discussed in detail in the next subheading, this probability can be estimated
by using the neural network algorithm previously described. P!qi

a", on the
contrary, is the (prior) probability that the residue is observed to assume the
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solvent accessibility state qi
a in any native-like or non-native structure. It can

be estimated using the formula

P!qa"≡
N!qa"∑

q∈(l*m*h)
N!qa"

(14)

where N!qa" is the number of occurrences of the amino acid type a taking on the
solvent accessibility state q in some database of structures, and

∑
q∈(l*m*h)

N!qa"

is the total number of occurrences of the amino acid type a in that database.
Again, the question is: What is an appropriate database from which to tabulate
the counts? We can use the same approach adopted by Samudrala and Moult in
ref. 34, arguing that the set of possible compact conformations is a good choice
of prior distribution. Then, the database to use will simply be the database
of the experimentally determined structures. Alternatively, we can employ a
database of decoy structures. Such a database can be created by applying a de
novo conformational space sampling protocol to generate n decoy structures
(for example, n = 10) for each protein sequence that appears in the database
of the experimentally determined structures and then gathering the resulting
decoys.

We note that as P!qi
a"C" is estimated by the neural network algorithm with a

window of sequence profile as its input, the influence of the neighbors of residue
i on its conformation is automatically taken into account. Thus, the posterior
probability that residue i assumes a particular conformation is calculated in the
context of its surrounding environment. In contrast, the probability distribution
P!qa" is compiled on a “single-residue” basis. Thus, P!qa" can be viewed as
the tendency of the amino acid type a to adopt a certain conformation averaged
over the various types of neighborhood environments.

For further illustration, we generate a neural network-based Bayesian scoring
function for each of the following conformational properties: the virtual torsion
angle, the virtual bending angle, and the degree of solvent accessibility. The
virtual torsion angle and the virtual bending angle are calculated by the DSSP
program (103). Specifically, given a residue i of interest, the virtual torsion
angle for i is the dihedral angle defined by the C, atoms of residues i− 1,
i, i+ 1, and i+ 2. The virtual bending angle is the bending angle defined by
the C, atoms of residues i−2, i, and i+2. Solvent accessibility is the residue
water exposed surface in Å2. To implement the scoring functions, the virtual
torsion angle are manually divided into two discrete states, whereas the virtual
bending angle and the degree of solvent exposure are each manually divided
into three discrete states.
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2.3.3. Training and Post-Processing of the Neural Network

The Stuttgart Neural Network Simulator (104) is a versatile and convenient
tool to configure and train the neural networks for predicting the various
conformational properties. The network configurations follow the description
given in Subheading 2.3.1. The input layer receives a window of sequence
profile. The window size typically ranges from 1 to 17 consecutive residues.
The network has a single hidden layer and an output layer of two or three units
representing two or three discrete states. See Fig. 3 for an illustration.

We divide the database of experimentally determined structures into two
equal subsets A and B, which are alternately used as the training and the test
sets. The neural network training is done in batch mode using standard back-
propagation, and the cycle of batch-mode training is repeated until the test
error reaches a minimum. We note that two neural networks are obtained at the
conclusion of the training—one (denoted as NNA" trained with subset A and
tested with subset B and another one (denoted as NNB" trained with subset B
and tested with subset A.

Given a residue of interest together with its windowed sequence profile, it is
desired to extract from NNA and NNB the posterior probabilities with which the
residue assumes each of the three states, say in the case of solvent accessibility
prediction (two states in the case of virtual torsion angle prediction and three
states in the case of virtual bending angle prediction). To this end, the nearest-
neighbor approach of Yi and Lander (102) is employed: The output layer of
NNA gives a 3-tuple vector (slA, smA, shA). The closeness of this vector with
respect to vectors corresponding to all instances in the test set can be calculated
through the Euclidean measure

(
!slA− sglA"

2+ !smA− sgmA"
2+ !shA− sghA"

2
)1/2

(15)

where g stands for instance g in the test set. The k-nearest neighbors [e.g.,
the closest 5% of all instances in the test set with respect to (slA, smA, shA)]
are then determined, and the actual solvent accessibility states of those nearest
neighbors are tabulated, yielding the counts (clA, cmA, chA). The same procedure
is repeated with NNB. The probability that the residue of interest takes on each
of the three states is thus estimated by

P!sq"=
cqA+ cqB∑

r∈(l*m*h)
crA+ crB

(16)

where q stands for low, medium, or high accessibility state. Equation 16
supplies the posterior probabilities required in Eq. 13 for score calculation.
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Fig. 3. Schematic diagrams of the neural networks used to predict conformational
property given a sequence profile. (A) A fully connected neural network with input
(5 units), hidden (4 units), and output (2 units) layers. Every unit in the input layers is
connected with every unit in the hidden layers. The same holds true for the hidden and
the output layers. (B) The typical size of a neural network we use for constructing the
knowledge-based functions. In this example, the window size of the input sequence
profile is five residues. Each residue provides twenty input units, representing the
log-likelihood values for the twenty possible amino acid substitutions for that residue
position. The hidden layer consists of 25 units. The output layer has three units. In the
case of solvent accessibility prediction, these output units correspond to low, medium,
and high solvent accessibility states, respectively. The input and the hidden layers, and
the hidden and the output layers, are fully connected as in (A), but for simplicity, the
connections are not shown.

2.3.4. Decoy Sets and Evaluation of the Knowledge-Based
Scoring Functions

One evaluates the usefulness of a scoring function by examining the ability
of the scoring function to distinguish native-like conformations from non-
native ones. This is achieved through generating test decoy sets and testing
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the performance of the function on those sets. There are various approaches to
generate test decoys. For example, they can be created by sampling discrete-
state models starting from a native conformation (105), having amino acid
sequences with known folds mounted onto different folds (106,107), and using
crystal structures of various resolutions (85). Databases of test decoy sets
have been created to enable the evaluation of scoring functions on multiple
types of decoys (108–110). An approach most relevant to evaluating scoring
functions for de novo structure prediction is to create test decoys through de
novo conformational space sampling. A typical de novo conformational space
sampling protocol consists of an MCSA search procedure guided by a set of
energy functions, with move set based on lattice models (111,112), fragment
substitution (113,114), or continuous torsional distributions (81).

There are several commonly used measures for evaluating the usefulness of
scoring functions. The logPB1 measure is the log probability of selecting the
lowest C, root mean square deviation (RMSD) conformation in a test decoy
set, calculated with the formula

logPB1 = log10

(
Ri

n

)
(17)

Here, Ri is the C, RMSD rank of the best scoring conformation in the test
set of n decoys. The logPB10 measure is the log probability of selecting the
lowest C, RMSD conformation among the top-10 best-scoring conformations,
that is, instead of using the RMSD rank of the best-scoring conformation, the
best RMSD rank achieved among the top-10 best-scoring conformations is used
as Ri in Eq. 17. The CC measure is the correlation coefficient between the C,
RMSDs and the scores generated by the scoring function. The enrichment ratio
measure is the fraction enrichment of the top 10% lowest RMSD conformations
in the top 10% best scoring conformations. Specifically, after a scoring function
is applied to a test decoy set, we count the number of decoys (denoted as a),
which are in the top 10% in terms of both their scores and their C, RMSDs
relative to the native structure. The expected number in a random distribution
is 10% × 10%× (number of decoys in the set) (denoted as b). The enrichment
ratio is a/b. A value above 1 indicates enrichment over the random distribution.
The four evaluation measures are illustrated in an example in Fig. 4.

To examine the utility of the knowledge-based scoring functions in decoy
discrimination, we apply both the RAPDF and the neural network-based
functions to 41 test decoy sets of varying quality generated with de novo
conformational space sampling. Each decoy set contains approximately 10,000
decoy conformations. Table 1 summarizes the PDB identifiers and the SCOP
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Fig. 4. Measures for evaluating scoring functions. Log PB1 is the log probability
of selecting the lowest C, RMSD conformation in a test decoy set (point A), which
is −1-42 in this example. Log PB10 is the log probability of selecting the lowest C,
RMSD conformation among the top 10 best-scoring conformations in a test decoy set
(point B), which is −1-76 in this example. The correlation coefficient between the C,
RMSDs and the scores is equal to the slope of line C-C and has the value of 0.25
in the present case. Line D-D represents the top 10% score cutoff for the decoy set.
By counting the number of decoys below this line, which are also within the top 10%
RMSD cutoff (left of line E-E), and dividing this number by the expected value for
a random distribution, an enrichment ratio of 2.7 is obtained. Different measures are
needed dependent on the specific purposes and roles of the scoring functions.

classifications of the 41 protein sequences used in generating the test decoy sets.
Also included is the C, RMSD of the best decoy relative to the corresponding
native structure in each test set. Among them, fifteen test decoy sets have their
best structures below 6Å C, RMSD relative to their native conformations.
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Table 1
List of the Protein Sequences Used in Generating the Test Decoy Sets

Protein SCOP classifications Length Minimum RMSD

1b0n-A2 a.35.1.3 (A:1–68) 68 2-729
1b33-N d.30.1.1 (N:) 67 7-349
1b34-A b.38.1.1 (A:) 80 7-943
1b4b-A d.74.2.1 (A:) 71 5-506
1b79-A a.81.1.1 (A:) 102 5-29
1ck9-A d.79.3.1 (A:) 104 7-661
1ctf d.45.1.1 (–) 68 4-37
1dgn-A a.77.1.1 (A:) 89 4-482
1dj8-A a.57.1.1 (A:) 79 5-092
1dtj-A d.51.1.1 (A:) 74 4-902
1e68-A a.64.2.1 (A:) 70 3-794
1eai-C g.22.1.1 (C:) 61 6-914
1edz-A2 c.58.1.2 (A:3–148) 146 9-277
1efu-B3 a.5.2.2 (B:1–54) 54 5-247
1ev0-A d.71.1.1 (A:) 58 6-641
1f53-A b.11.1.4 (A:) 84 9-123
1fc3-A a.4.6.3 (A:) 119 8-184
1fmt-A1 b.46.1.1 (A:207–314) 108 7-385
1g6e-A b.11.1.6 (A:) 87 7-891
1g7d-A a.71.1.1 (A:) 106 5-867
1goi-A1 b.72.2.1 (A:447–498) 52 6-111
1gut-A b.40.6.1 (A:) 67 6-459
1h5p-A b.99.1.1 (A:) 95 8-223
1h8a-C1 a.4.1.3 (C:87–143) 57 2-941
1ijy-A a.141.1.1 (A:) 122 7-916
1ira-Y1 b.1.1.4 (Y:1–101) 101 8-317
1iwg-A1 d.58.44.1 (A:38–134) 97 5-7
1jju-A3 b.1.18.14 (A:274–351) 78 6-614
1jos-A d.52.7.1 (A:) 100 5-302
1jyg-A a.60.11.1 (A:) 69 3-471
1k2y-X2 c.84.1.1 (X:155–258) 104 6-889
1ktz-B g.7.1.3 (B:) 106 8-586
1l9l-A a.64.1.1 (A:) 74 4-041
1msp-A b.1.11.2 (A:) 124 9-932
1n69-A a.64.1.3 (A:) 78 6-753
1qu6-A1 d.50.1.1 (A:1–90) 90 8-597
1rie b.33.1.1 (–) 127 9-548
1sra a.39.1.3 (–) 151 8-781
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1sro b.40.4.5 (–) 76 6-031
2igd d.15.7.1 (–) 61 6-508
7gat-A g.39.1.1 (A:) 66 7-248

Each row lists the Protein Data Bank (PDB) identifier of the sequence, the SCOP classification,
the length of the protein sequence, and the C, RMSD of the best decoy structure relative to the
native conformation in the test decoy set. Each test decoy set contains ∼ 10*000 decoys. Fifteen
test decoy sets have their best structures below 6Å C, RMSD relative to their corresponding
native conformations. Twenty-four test decoy sets have their best structures below 7Å C, RMSD
relative to their corresponding native conformations.

Twenty-four decoy sets have their best structures below 7Å C, RMSD relative
to their native conformations, and so on. For illustration purpose, we employ
the enrichment ratio measure to evaluate the scoring functions. The results are
displayed in Fig. 5. From the figure, we observe that the RAPDF function gives
uniform performance for decoy discrimination across decoy sets of different
quality, whereas the neural network-based scoring functions tend to perform
better for decoy sets with better quality.

2.4. Some Other Knowledge-Based Scoring Functions in the Recent
Literature

In the formulation of the RAPDF scoring function as well as of the other
pairwise distance preference functions described in refs. 11,77,87 and (88),
the solvation effect is not explicitly modeled. However, as we have previously
discussed, as protein folding occurs in the aqueous environment, a careful
accounting of the solvent effect is important in determining the native confor-
mation. In this regard, McConkey et al. (115) quantify contact surfaces of atoms
by integrating the solvent accessible surface and the inter-atomic contacts into
one quantity and construct an all-atom contact potential based on the contact
preferences of 167 residue-specific atom types with 168 possible contact types
(167 possible atom contact types and one solvent contact). They demonstrate
that this all-atom contact potential delivers satisfactory performance for distin-
guishing native conformations from decoy structures.

Another possible approach to augment the pairwise distance preference
scoring functions is by considering various multi-body geometric properties.
In ref. 116, a four-body SNAPP potential involving the tiling of protein struc-
tures with tetrahedra having the center of mass of each amino acid side-chain
at each vertex is introduced. This formulation results in 8855 possible tetra-
hedron types with the corresponding log-likelihoods computed from structural
databases. It is found that the SNAPP potential is accurate in predicting the



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Book_Zaki & Bystroff_1588297527_Proof1_May 9, 2007

264 Ngan et al.

Fig. 5. Performances of the various knowledge-based scoring functions. The
functions are evaluated using the average enrichment ratios on test decoy sets of
varying quality. For example, the first four bars indicates the average enrichment
ratios attained by the individual functions for the test decoy sets that contain struc-
tures of less than 6Å C, RMSD relative to the native conformations. The following
scoring functions are examined in the figure: a neural network-based virtual torsion
angle scoring function with a three-residue window; a neural network-based virtual
bending angle scoring function with a five-residue window; a neural network-based
solvent accessibility scoring function with a three-residue window; and the all-atom
distance-dependent conditional probability function.

effects of hydrophobic core mutations. A similar four-body scoring function
derived through the Delauney tessellation of side-chain centroids of amino
acids is shown to be able to distinguish native conformation from partially
unfolded and deliberately misfolded structures (117). On the basis of theAQ1
work of Professor Banavar and his colleagues, Ngan et al. (118) construct a
three-body knowledge-based potential involving the radii of curvature formed
among triplets of residues in protein conformations. The resulting residue-triplet
function is shown to be of utility in discriminating native-like conformations
from non-native structures. Finally, Li et al. (119) introduce a knowledge-based
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scoring function based on the edge simplices from the alpha shape of the
protein structure. Formally, their statistical alpha contact potential is a two-body
scoring function, and their definition of contact is when atoms from non-bonded
residues share a Voronoi edge, with the edge at least partially contained in
the body of the protein. This formulation has the benefit of avoiding spurious
contact between two residues when a third residue is between them. The authors
have shown that the alpha contact potential performs comparably with other
atom-based potentials, while requiring fewer parameters.

In summary, the construction of a knowledge-based scoring function involves
the following steps: (1) selection of a conformational property that differs
between native-like and non-native structures; (2) compilation of the posterior
probability distributions of this conformational property by direct counting or
through statistical techniques such as neural network, based on a database of
experimentally determined structures; (3) derivation of the prior probability
distributions based on a database of decoy structures or through simplifying
assumptions such as the averaging-over-atom-types argument of Samudrala and
Moult (34), the quasi-chemical approximation of Lu and Skolnick (87), or the
uniform distribution argument of Zhou and Zhou (88); and (4) formation of the
log-odd scores from the prior and posterior probabilities. Step 1 is perhaps the
most critical step and is largely dependent on one’s insights into the physical
and chemical processes involved in protein folding and by trial and error. In
step 2, the selection of appropriate statistical techniques is heavily influenced
by the size and quality of the available data set, because these factors have a
direct impact on determining whether certain statistical assumptions (e.g., the
conditional independence assumption in Eq. 7) are needed.

2.5. The Design of Decoy Filters

As we have discussed, conformational search algorithms produce a multitude
of candidate conformations. Various scoring functions can be combined into a
filter to distill this vast collection of decoys, to retain those that are native-like.
An approach to constructing such a filter is to assign weights to the different
scoring functions, such that the resulting linear combination of the scores gives
the overall quantitative assessment of a decoy structure of interest. The weights
used in the linear combination can be derived by performing logistic regression
on test decoy sets. Specifically, native-like decoys (determined by a suitably
chosen C, RMSD cutoff) in each test set are labeled as belonging to class 1,
and the rest labeled as class 0. The normalized scores for an individual decoy
become the independent variables (xj; j = 1 - - -k; k= the total number of score
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types), whereas its associated class label forms the dependent variable (p),
which are then used to fit the following equation to obtain the weights wjs:

log
(

p

1−p

)
= .+w1x1*i+ - - -+wkxk*i (18)

Here, , is a constant representing the intercept. i ranges from 1 to N , and
N is the total number of decoys. Normalization of a scoring function can be
achieved by subtracting its mean and dividing by its standard deviation, where
the mean and the standard deviation are computed over all decoys within a test
set, or by replacing the raw score of a decoy with its rank and then dividing
by the total number of decoys in the test set. Techniques such as leave-one-
out cross-validation and forward and backward stepwise regression can be
applied to determine which independent variables are helpful in assessing the
accuracy of a given decoy structure and which can be discarded. Essentially,
functions describing useful orthogonal characteristics of protein native conforma-
tions will receive large weights, whereas those that are less useful or containing
overlapping information will have smaller or zero weights. Finally, alternative
approach to performing logistic regression is also possible, for example, by
replacing itwithmachine-learning techniques such as the neural network or SVM.
The decision is again influenced by the size and quality of the available test data.

2.6. Further Enhancement of Decoy Selection Through Conformer
Clustering and High-Resolution Refinement

Conformer clustering and high-resolution refinement are often used as
additional steps in the decoy selection process to further refine the set of
native-like conformations retained by the decoy filter. The idea of conformer
clustering is based on the following observation: Conformers with correct folds
are in general similar to other conformers with correct folds. On the contrary,
it is unlikely that multiple conformers share the same mistake, and therefore,
conformers with incorrect folds are in general dissimilar to each other as well
as to conformers with correct folds. Hence, the conformers that are most similar
to the others, that is, those at the cluster centers of the conformational distri-
bution, will tend to be the correct ones. Various metrics are used to describe the
conformational distribution, including pairwise RMSD, pairwise RMSD with
cutoffs, and number of neighbors (16,120). Heuristic schemes such as k-mean
clustering, visual inspection following dimensionality reduction, and iterative
sampling (121) can be used to locate these cluster centers.

Figure 6 illustrates the performance of a conformer-clustering algorithm [the
density score function available in the RAMP package (122)] in distinguishing
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Fig. 6. The comparison of some knowledge-based scoring functions and the density
score function in discriminating decoys. In (A), the virtual bending angle scoring
function is compared to the density score function, whereas in (B), the solvent acces-
sibility scoring function is compared to the density score function. The diagrams show
that the density score function produces improved correlation between the C, RMSDs
and the scores in both cases, suggesting that conformer clustering is useful as a comple-
mentary step in decoy selection.

native-like structures from non-native conformations. Compared with the neural
network-based virtual bending angle and solvent accessibility scoring functions,
the density score function produces results that show improved correlation
between the C, RMSDs and the generated scores. This observation suggests
that applying conformer clustering in addition to using scoring functions as
filter can enhance the overall ability to select native-like structures from decoys.
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The goal of high-resolution refinement is to further optimize the remaining
candidate structures that have passed through the decoy filtering and conformer
clustering stages. The optimization is carried out by making small perturbations
to a candidate structure guided by a highly detailed energy potential. One of
the most notable methods is that of Misura et al., which has been shown to be
effective in the Sixth Critical Assessment of Techniques for Protein Structure
Prediction (CASP-6) (123,124). It involves applying perturbations to backbone
and side-chain torsion angles using an all-atom force field. The force field
consists of a standard 6–12 Lennard–Jones potential for Van der Waals packing,
the implicit solvation model of Lazaridis and Karplus describing dielectric
screening (73), and a new orientation-dependent hydrogen bonding term (125).
The hydrogen-bonding term is derived based on observed geometrical param-
eters of hydrogen bonds in high-resolution crystal structures of proteins. Using
this combined physics-based and knowledge-based function as part of their
prediction protocol, Bradley et al. have reported success in high-resolution
structure prediction of less than 1.5Å for protein domain of less than 85
residues (124).

A summary of the scoring functions discussed in this chapter can be found
in Table 2. We should note that there are other means to guide conforma-
tional search and decoy filtering besides using scoring functions. For example,
filtering schemes based on contact order (126) and beta sheet topology (127)
have been found to be beneficial in enriching the ensemble quality of decoy
structures.

3. Discussion and Conclusion
A main objective of the structural genomic initiatives, spurred by large-scale

genome sequencing efforts, is to determine as many protein folds as possible.
The need to determine protein structures rapidly and inexpensively in turn leads
to an increased interest in computational protein structure prediction, the two
main approaches of which being homology modeling and de novo structure
prediction.

The key components in de novo protein structure prediction are conforma-
tional space sampling and decoy selection. Scoring functions are employed in
both the conformational sampling stage and the decoy selection stage. In the
first stage, a selected combination of scoring functions approximates the energy
landscape of the conformational space, and conformational search algorithms
generate trajectories leading to the landscape minima, whereas in the second
stage, another set of possibly different scoring functions are used as filter to
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Table 2
A list of the scoring functions discussed in Section 2

Scoring
function

Subheading Usage Description

Class I force
field

2.1.1. Conformational space
search

Physics-based force field
modeling bonded and
non-bonded interactions
among atoms

RAPDF 2.2.1. Conformational space
search/decoy filtering

Knowledge-based
potential describing
atom–atom distance
preferences

IRAPDF 2.2.3. Conformational space
search/decoy filtering

Continuous version of the
RAPDF function

Neural network
knowledge-
based
functions

2.3. Conformational space
search/decoy filtering

Incorporation of neural
network into the Bayesian
probability framework
to describe various
conformational properties

Atom–atom
contact
scoring
function

2.4. Conformational space
search/decoy filtering

Knowledge-based
atom–atom contact
preference function taking
solvent accessibility into
account

SNAPP
potential

2.4. Conformational space
search/decoy filtering

A four-body
knowledge-based function
describing tiling of protein
structures with tetrahedra

Four-body
contact
scoring
function

2.4. Conformational space
search/decoy filtering

A four-body
knowledge-based function
based on Delauney
tessellation of side chain

Residue triplet
scoring
function

2.4. Conformational space
search/decoy filtering

A three-body
knowledge-based function
based on the radii of
curvature formed among
triplets of residues

(Continued)
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Table 2
(Continued)

Scoring
function

Subheading Usage Description

Alpha contact
potential

2.4. Conformational space
search/decoy filtering

A two-body
knowledge-based function
based on edge simplices
from the alpha shape of the
protein structure

Structure
refinement
potential of
Misura et al.

2.6. High-resolution
refinement

A combined physics- and
knowledge-based function
modeling Van der Waals
interaction, solvent effects,
and hydrogen bonding

Each row gives the name of the scoring function, the subheading in which it is discussed, its
usage, and a brief description of its components.

retain a collection of the native-like structures. Conformer clustering and high-
resolution refinement can also be used as additional steps to further refine this
collection. In this chapter, we have studied some examples of the physics-
based and knowledge-based scoring functions. For the physics-based approach,
the Class I force field and its extensions as well as solvation modeling were
discussed. For the knowledge-based approach, we studied the Bayesian proba-
bility formalism and used it to derive the RAPDF (34). In addition, we detailed
the construction of the neural network-based Bayesian scoring functions. The
Bayesian probability formalism was combined with the neural network method-
ology to construct various types of log-likelihood scoring functions. Then,
we described some of the new knowledge-based scoring functions from in
the recent literature. These functions extend the pairwise distance preference
scoring functions in various ways, for example, by explicitly modeling the
solvent effects and by considering multi-body geometric arrangements and
interactions. Finally, we briefly discussed conformer clustering and described
a detailed energy potential used for high-resolution refinement. In general,
because of the weaknesses of solvent and electrostatic modeling, simulations
attempting to fold proteins de novo from physics-based scoring functions alone
do not perform satisfactorily. The statistical models that are used to construct
knowledge-based functions provide added flexibilities over direct physical
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modeling, and as a result, most of the successful de novo structure prediction
protocols have both physics-based and knowledge-based components.

Scoring function design remains a very difficult problem. None of the
existing physics-based and knowledge-based functions can faithfully reproduce
the true energy landscape of the protein conformational space, and none of
them can consistently and reliably select native-like conformations from non-
native structures for a broad spectrum of proteins. The difficulty is mainly
because the physical and statistical models considered so far in the literature
cannot well approximate the quantum mechanical character of intra-molecular
and solvent-protein interactions. Furthermore, scoring functions describing
truly orthogonal characteristics of protein native conformations are difficult
to discover, especially for the knowledge-based functions that are the sum of
many constituent effects. Thus, it is of practical interest to continue devel-
oping various types of new scoring functions, to exploit their differences, and
to capture the cumulative effect of incremental enrichments. Fortunately, the
increase in the size of the PDB together with increased computational power
means that the construction of more sophisticated knowledge-based scoring
functions are now possible. More realistic electrostatics and solvation models
are also being developed, increasing the capabilities of the physics-based force
fields. These advances will play important roles to improving the state of the
art of protein folding simulation and de novo structure prediction.
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