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13 De Novo Protein Structure Prediction

Ling-Hong Hung, Shing-Chung Ngan, and Ram Samudrala

13.1 Introduction

An unparalleled amount of sequence data is being made available from large-scale
genome sequencing efforts. The data provide a shortcut to the determination of
the function of a gene of interest, as long as there is an existing sequenced gene
with similar sequence and of known function. This has spurred structural genomic
initiatives with the goal of determining as many protein folds as possible (Brenner and
Levitt, 2000; Burley, 2000; Brenner, 2001; Heinemann et al., 2001). The purpose of
this is twofold: First, the structure of a gene product can often lead to direct inference
of its function. Second, since the function of a protein is dependent on its structure,
direct comparison of the structures of gene products can be more sensitive than
the comparison of sequences of genes for detecting homology. Presently, structural
determination by crystallography and NMR techniques is still slow and expensive
in terms of manpower and resources, despite attempts to automate the processes.
Computer structure prediction algorithms, while not providing the accuracy of the
traditional techniques, are extremely quick and inexpensive and can provide useful
low-resolution data for structure comparisons (Bonneau and Baker, 2001). Given the
immense number of structures which the structural genomic projects are attempting
to solve, there would be a considerable gain even if the computer structure prediction
approach were applicable to a subset of proteins.

There are two approaches to predicting protein structure. Template-based meth-
ods identify one or more homologues on which the structure is based. Ab initio or de
novo methods obtain a structure more directly from sequence, without the need for
a template. De novo techniques are much more computationally intensive than tem-
plate methods and are limited to smaller proteins (<100–150 residues). Template-
based methods can be applied to larger proteins and are generally more accurate than
de novo methods. However, this is only true when a template exists [<2000 known
folds in SCOP 1.61 (Murzin et al., 1995; Andreeva et al., 2004) out of an estimated
10,000 that are possible (Koonin et al., 2002)] and can be found and properly aligned.
De novo methods are necessary when no template exists and competitive in accuracy
when templates cannot be identified or aligned with confidence. Even when a good
template and alignment are found, de novo methods are still necessary to build the
nonhomologous “loop” regions.

Perhaps more so than for other methodologies, the development of de novo
methods has been greatly aided by the blind tests provided biannually by the Critical
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Assessment of Methods for Protein Structure Prediction (CASP) (Moult et al., 1995,
1997, 2001, 2003, 2005; Moult, 1999). The diversity of proteins is extremely large
and it is easy to overoptimize and obtain methods that perform well on small test
sets but fail when given a new unknown target. CASP1 revealed the depth of this
problem and quickly dispelled any illusions about the protein structure prediction
problem being solved (Moult et al., 1995). By CASP3, however, predictors had
adapted their methodologies and both lattice and fragment assembly methods began
to make predictions with the correct fold for small proteins (Moult, 1999; Moult
et al., 1999; Venclovas et al., 1999). The continued steady improvement in the per-
formance of the methods can be seen in the results of the 6th iteration of CASP
(http://predictioncenter.org/casp6/ ).

There are a multitude of de novo protein methodologies and algorithms but all
of them can be viewed as search algorithms attempting to find the conformation with
the global minimum folding energy. It is the size of the search space and complexity
of the energy function that make the problem so very difficult. We will review the
approaches to calculating folding energies, the different methods used to represent
and generate conformations to efficiently search for the lowest energies, and finally
the methods used to select the best minimized conformers. The object is not to
enumerate the different simulation methods that exist but to review the principles
that all prediction protocols share. PROTINFO (Hung and Samudrala, 2003; Hung
et al., 2005), the de novo program developed by us, is used throughout for illustration
purposes.

13.2 Methods and Algorithms

13.2.1 Energy Functions

Very accurate energies can be calculated ab initio for small organic and inorganic
molecules using quantum-mechanical (QM) methods (Hartree, 1957; Hohenberg
and Kohn, 1964). Unfortunately, proteins are much more difficult systems, not only
because of the size and flexibility of the protein molecule but also because of the
presence of solvent molecules. The nonuniform polar aqueous environment compli-
cates the calculation of electrostatic energies. In addition, the largest driving force
for protein folding is the hydrophobic effect (Kauzmann, 1959; Dill, 1990) which is
dependent not only on solvent–protein interactions, but also on higher-order solvent–
solvent interactions (Frank and Evans, 1945).

Although a complete QM treatment for a complete protein is not feasi-
ble, approximations and simplifications can be made to derive empirical physics-
based energies. For example, QM calculations of simple systems give hydrogen
bond geometries that are applicable to those found in proteins (Morozov et al.,
2004). Electrostatic calculations can be approximated using classical point charges
and modifying the dielectric constant to approximate polarizability of the protein
and solvent. Lennard-Jones potentials can be used to approximate van der Waals
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interactions. The first use of these functions was in molecular dynamics simulations
where fast, easily calculated, and differentiable energies were required to determine
the force fields. Some prototypes for these types of energies are AMBER (Weiner
and Kollman, 1981), CHARMM (Brooks et al., 1983), and ENCAD (Levitt et al.,
1995). Parameters for these energies have been obtained by fitting to experimental
data. For perturbations around a known native conformation (Levitt, 1983a; Daggett
et al., 1995) these energies perform adequately, since the electrostatic and solvent-
dependent information is implicit in the initial conformation itself. In combination
with experimental constraints from NMR (Levitt, 1983b; Brunger et al., 1986), these
force fields give rise to accurate structures, as long as the constraints are sufficient
to define the fold. However, in isolation, the weaknesses of the solvent and elec-
trostatic modeling become important and simulations attempting to fold proteins
de novo from physics-based energies alone perform poorly.

13.2.2 Knowledge-Based Energies

Physics-based functions, while empirical, still derive their basic formulation from an
underlying physical model. In contrast, knowledge-based functions are derived from
properties observed in known folded proteins which are not observed in unfolded or
misfolded peptides (Moult, 1997). The bases of the knowledge-based propensities are
of course physical. However, the black-box approach to weighting of physical effects
has proven to be more effective than explicitly specifying the form and calculating
the constants in traditional physics-based energies. Most of the current successful
de novo techniques have some knowledge-based component.

An example of a simple heuristic energy is the hydrophobic moment (Eisenberg
et al., 1982) which is analogous to the physical moment of inertia except that mass
term is replaced by a measure of the hydrophobicity of the residue. Minimization
of this function results in compact structures with hydrophobic residues in the cen-
ter. In principle, any property that is differentially observed in folded proteins and
unfolded proteins can be converted to an energy using a log-odds Bayesian for-
mulation. HMMs, neural nets, SVMs, and trial and error have been used to find
such properties (for a review see Melo et al., 2002). A particularly useful class of
knowledge-based functions has been pairwise distance preferences (Jones et al.,
1992; Sippl and Weitckus, 1992; Samudrala and Moult, 1998) which reflect proper
packing. Examples are found in many of the top performing de novo methods includ-
ing ROSETTA (Simons et al., 1999), FRAGFOLD (Jones, 2001), TASSER (Zhang
and Skolnick, 2004c), CABS (Boniecki et al., 2003), and PROTINFO (Hung and
Samudrala, 2003). Some of the recent advances in understanding and improving
knowledge-based functions based on pairwise distances are described in the work
of Zhou and Zhou (2002) and Zhang et al. (2004a,b). Combinations of different
knowledge-based energies are used to take into account different properties of folded
protein. Our PROTINFO protocol uses a combination of hydrophobic moment, an
all-atom pairwise distance function, RAPDF (Samudrala and Moult, 1998) and a
bad contacts function. ROSETTA’s complex energy function is an amalgam of many
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different physics- and knowledge-based terms (Bonneau et al., 2002; Bradley et al.,
2003). FRAGFOLD uses a pairwise short-range distance potential, solvation, steric,
and hydrogen bonding terms. CABS and TASSER use potentials for secondary
structure propensity, hydrogen bonding, short-range pairwise correlations, and ho-
mology information in the form of distance constraints and preferred side-chain
contacts. Thus, while all of the above prediction protocols employ some sort of
energy functions based on pairwise distance preferences, they differ in the degree
to which homology information is used. Also, the number of physics-based and
knowledge-based terms employed varies considerably from one protocol to another.

In-depth discussions of the mathematical formulations, limitations, and possi-
bilities of the physics-based and knowledge-based energy functions can be found in
Chapters 2 and 3 of this text, respectively.

13.2.3 Simplified Representations

A simple Cartesian representation of a protein conformation gives rise to 3N degrees
of freedom where N is the number of atoms. The fact that bond lengths are nearly
constant allows representation of a protein by its torsional angles, reducing the
dimensionality of the space threefold. Even in torsional coordinates, the size of
conformational space is enormous (Levinthal, 1968), too large for even nature to
search exhaustively. To find the conformation with lowest energy, algorithms used
by both nature and humans need to sample the canonical conformational space
selectively, quickly, and efficiently.

Reductions in the size of the conformational space can be achieved using sim-
plified representations. Ignoring the side chains is a common simplification for both
Cartesian and torsional representations. In torsional space, a further simplification
is made by assuming that the peptide bond is planar, eliminating the � angle as a
parameter and leaving only the � and � angles to represent the main chain. Alterna-
tively, there can be a limited representation of side chains. This can be in the form of
pseudoatoms which are the weighted average in position and/or size of several real
atoms in Cartesian space. Increasing computational power has made all-(heavy)-
atom representations more common. For all-atom representations in torsional space,
usually the most common of the observed side-chain angle combinations (rotamers)
are used to reduce computational costs. It is also not unusual to use multiple rep-
resentations: a coarse representation at the beginning and a finer representation at
the end after most of the computationally expensive search has been accomplished
(Samudrala et al., 1999a; Kolinski et al., 2001).

13.2.4 Lattice Methods

Even with simplified structural representations, the conformational space is still very
large. A straightforward method to reduce search space is to digitize the possible
conformations onto a regular grid or lattice. This is typically done in Cartesian space
although some attempts have been made using lattice-type methods in torsional space
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(Park and Levitt, 1995). Grid geometries vary, and include tetrahedral (Hinds and
Levitt, 1992) and face center cubic (Kolinski et al., 2003) geometries. For maximum
speed, lattice models tend to use very simple representations containing one (e.g.,
Kolinski et al., 2001) or two (e.g., Levitt and Warshel, 1975) atoms, one for the
main chain and one for the side chain. Because the side chain sizes and distances
relative to the main chain vary with residue type, the side-chain positions are off
lattice, i.e., not restricted to the grid. Lattice searches are extremely fast, allowing
for the exhaustive enumeration of all possibilities for small proteins in coarser rep-
resentations. This is an important advantage given the difficulty of finding the global
minimum by heuristic searches due to the chaotic nature of protein folding energy
landscape. Unfortunately, most proteins are too large for exhaustive enumeration of
all states and heuristic searches are required. Specialized grid-based move sets are
used in conjunction with standard global optimization techniques such as Monte
Carlo simulated annealing (Kolinski et al., 2001) and genetic algorithms (Rabow
and Scheraga, 1996) to search the lattice space for the energy minimum.

13.2.5 Fragment Assembly

Template methods use the structure of one or more fragments of closely related
proteins to build the model of the target protein. Fragment assembly (Bowie and
Eisenberg, 1994) is an extension of this idea except that the fragments can be
smaller, come from multiple sources, and need not transfer the parent fold to the
target. There are two major benefits of using fragments. The first is the transfer of
homology-based information. For larger fragments, this occurs at the level of super-
secondary structures (Jones and McGuffin, 2003; Zhang and Skolnick, 2004a). For
example, TASSER (Zhang and Skolnick, 2004a) uses large fragments exclusively
as minitemplates and uses lattice sampling to build the regions between them. For
smaller fragments, secondary structure information may be conveyed whereas for the
smallest fragments (typically tripeptides), the sequence match is not significant and
little or no information based on evolutionary conservation is transferred. However,
the second advantage of using fragments is that they are derived from real folded
proteins and thus implicitly contain useful knowledge-based information, i.e., no
clashes, good geometry, and good local packing. Move sets based on substitution of
random fragments automatically bias the search space to conformations with good
local structure.

Fragment assembly can be divided into two stages: choosing the library of
fragments to use and the minimization of the conformations formed by substitu-
tions of fragments from the library into the target conformer (see Fig. 13.1). Fold
recognition techniques are used to select larger homologous fragments when avail-
able. Although they provide homology-based structural information, large fragments
with a good sequence match to the target are too few in number to provide a suf-
ficiently large library of fragments required to generate the diverse structures to
efficiently sample conformational space. Smaller fragments are used as they can be
more easily matched to the target sequence being replaced during move generation.
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Fig. 13.1 Fragment assembly and continuous torsional methods for generating new structures to
explore conformational space. Fragment assembly takes pieces from known protein structures to
generate a library of fragments. By replacing part of the old conformer with a fragment from the
library, a new conformation is generated. The continuous torsional moves are similar except that
instead of using actual fragment coordinates or angles, a database of known structures is used to
generate smoothed distributions of �/� angles. These distributions in turn provide torsional angles
which are substituted into a conformer to generate a new conformation. The major advantage of
this method over fragment assembly is that the angles are not limited to the values in a library
while still reflecting the distribution of angles observed in known proteins

For tripeptides, sufficient numbers exist in the PDB so that exact sequence matches
are possible even for rare triplet sequences. Fragment libraries used for move sets are
usually filtered to match the secondary structure of the target, particularly in regions
where the secondary structure is known with confidence.
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Fig. 13.2 Conformational searching using Monte Carlo simulated annealing simulation. Con-
formational changes or “moves” are generated as shown in Fig. 13.1 using fragment assembly or
continuous torsional distributions. The energy is evaluated after each move and is compared with
the previous energy, obtaining the energy difference �E . The move and the associated conforma-
tional change is either accepted or rejected based on Boltzmann probability P ∝ exp(−�E

/
kT ),

where k is Boltzmann’s constant and T is the temperature. In the early stage of the simulated
annealing simulation, the temperature is set high so that many energetically unfavorable (uphill)
moves (for example, from step k to step k+1) can be accepted to allow the search to climb out
of shallow minima. As the simulation progresses, the temperature is gradually decreased and the
chance of accepting an uphill move becomes progressively lower, allowing the search to find the
lowest point of the final deep minimum

Unlike lattice-based methods, complete enumeration of all states is not possible
and heuristic techniques are used to search for energy minima. Because moves are
based on the substitution of a finite set of fragments, there is a danger of fragment
assembly searches becoming trapped in local minima. Monte Carlo simulated an-
nealing (MCSA) with its ability to move “uphill” during the search has been used
to reduce the likelihood of this happening. Figure 13.2 illustrates the essential ideas
behind MCSA. Fragment assembly methods have been among the most successful
of sampling techniques for de novo simulations with many of the best performers
at CASP6, ROSETTA (Simons et al., 1999) and ROBETTA (Chivian et al., 2003),
FRAGFOLD (Jones and McGuffin, 2003), Undertaker (Karplus et al., 2003), and
TASSER (Zhang and Skolnick, 2004a), using some form of fragment assembly.

13.2.6 Continuous Torsional Distributions

Protein energy landscapes are very complex with multiple local minima. Exhaus-
tive searches, heuristic search techniques such as simulated annealing/genetic algo-
rithms, small local moves, and multiple simulations have been used to avoid being
trapped in local minima. However, a problem inherent in the discrete representations
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used in lattice models and fragment assembly is that the resolution of the search
is limited by the resolution of the representation and move set. Searches become
trapped when the discrete moves are too coarse to further explore the space around
the minimum. Continuous representations avoid these problems. We have imple-
mented a continuous version of fragment assembly. Rather than using the torsional
angles of real fragments, move sets are based on continuous distributions of an-
gles derived from known structures. Unlike earlier attempts (Lee et al., 1996), we
have developed a system to mimic three-residue fragment replacement taking into
account secondary structure. For each possible three-residue sequence with each
possible secondary structure, a continuous basis �/� angle distribution for the cen-
tral residue is determined based on the observed angles in known structures. For
a given target sequence, the secondary structure propensities are estimated using
PsiPred (Jones, 1999). For each residue, these propensities are used to calculate a
linear combination of the secondary structure-dependent basis distributions. This
combined distribution is then used to bias the choice of a new set of �/� angles.
Rather than replacing part of a fragment, angles from the existing conformation are
replaced by these new angles to make a move. The protocol is as effective as frag-
ment assembly in cases where the structure can only be resolved coarsely. However,
the advantages of a continuous representation become readily apparent when the
energies are able to define the structure more precisely as shown in Fig. 13.3. The
results in Fig. 13.3A are generated using the default PROTINFO energy function of
RAPDF, hydrophobic moment, and bad contacts. In Fig. 13.3B, ambiguous NMR
constraints have been included in the energy function.

13.2.7 Selection of the Best Conformers

Because of the problem of multiple minima, most structure prediction protocols con-
sist of two stages: generation of a set of multiple conformers from the minimization
searches and selection of the best conformer(s) from this group. Energy functions
can be used to choose the best conformer. Computationally more expensive functions
are available to accomplish this because the number of minimized conformations is
much smaller than the number of conformations evaluated during the minimization
process. However, any function related to the minimized energy will also be min-
imized and less informative. Orthogonal, unrelated functions are difficult to find,
especially for knowledge-based functions which are the sum of many substituent
effects. Nevertheless, the cumulative effect of multiple small enrichments can be
effective for selection as shown in Fig. 13.4.

The energy functions used for the MCSA simulations as well as those subse-
quently used for conformer selection are not precise. Thus, incorrect folds will some-
times have good scores according to these approximate energy functions. However,
conformers with correct folds will be similar to other conformers with correct folds.
Therefore, unless there is a systematic error (e.g., an incorrect starting secondary
structure), it is unlikely that multiple conformers will make the same mistake and
conformers with the incorrect fold will be in general dissimilar both to those with
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Fig. 13.4 The enrichment of conformations after selection using a set of energy functions for
CASP6 targets. Fourteen different energy functions are used to iteratively rank the minimized
conformers. The number of conformers retained and the order in which the energies are applied
were previously optimized for a large set of different target sequences. The enrichment index is
computed as follows: Let a be the number of the selected conformations which are in the top
10% in terms of their C� RMSD relative to the native structures. Let b be the expected number in
a random distribution. The enrichment index is the ratio a/b. Although the energy functions are
related to the target function minimized during generation, the use of multiple functions produces
significant enrichment of the top conformers in most cases

the correct fold and to each other. Thus, the conformers that are the most similar to
the others, i.e., near the center of the conformational distribution, will tend to be the
correct ones. The conformational center is found by using clustering methods. Met-
rics used include pairwise root-mean-square deviation (RMSD), pairwise RMSD
with cutoffs, and number of neighbors (Simons et al., 1999; Wang et al., 2004).

When there are no systematic errors, treating the entire ensemble as a single
cluster gives the best signal. Even in a relatively uniform distribution, outliers can still
bias and skew the determination of the conformational center. Our iterative density
protocol addresses the problem by removing outliers, recalculating the conforma-
tional center of the remaining set, and repeating until the set is well-conditioned
and no outliers remain. Alternatively, patchiness due to systematic errors can be
addressed by dividing the conformers into different groups using K-means or hier-
archical clustering. Iterative sampling schemes can also be used to allow very large
sets to be clustered quickly (Zhang and Skolnick, 2004b). When multiple clusters
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Fig. 13.5 Ranking of filtered conformations by iterative density. The percentile ranking (relative
to this filtered set of conformers) for the single best conformer chosen by iterative density is shown.
Even though all the conformers have been minimized for the original target function and ranked
by 14 selection functions at this stage, iterative density is sufficiently orthogonal to these functions
to be able to choose a top conformer. The accuracy and consistency of the selection also improves
with the number of conformers generated

are used, the conformers at the center of the largest cluster or the cluster with the
lowest energies are then chosen. Clustering can be used in conjunction with an ini-
tial energy-based screening of conformers. This combination is particularly effective
because clustering is relatively orthogonal to energy functions. In addition, the noise
reduction achieved by clustering increases with the number of conformations gener-
ated and thus automatically takes advantage of increased computational resources.
This observation is illustrated in Fig. 13.5, which shows a positive correlation be-
tween the percentile ranking of conformations selected by iterative density and the
number of candidate conformations generated.

13.2.8 PROTINFO, an Example de Novo Prediction Protocol

When given a target sequence, PROTINFO first uses PsiPred to predict the sec-
ondary structure. The secondary structure propensities are used to derive a set of
�/� distributions used to construct the conformations. A separate set of move like-
lihoods is generated which makes angle substitutions more likely in coil regions
and least likely in helical regions. Move likelihoods are also biased by the standard
deviation of the �/� distribution. MCSA simulations are run for 10,000 iterations



SVNY330-Xu-Vol-II October 6, 2006 23:19

442 Ling-Hong Hung et al.

using the move sets based on the angle distributions and move likelihoods. A small
percentage of moves (local moves) are restricted not only by the distribution but
also by the change in global RMSD. When the search nears an energy minimum, the
likelihood of local moves is increased to allow the search to find the lowest point in
the minimum. Brent minimization is also used, in conjunction with local moves, to
pinpoint the position of the nadir. The target energy function used is a combination
of hydrophobic moment to drive compactness (Eisenberg et al., 1982; Samudrala
et al., 1999b), a bad-contacts function to prevent overlapping van der Waals radii,
and a fast version of RAPDF (Samudrala and Moult, 1998) to ensure good packing.
The fast RAPDF function has a 0.99 correlation with RAPDF but is 10–15 times
faster. After 10,000 steps, the energy function is changed to use the full RAPDF
for highest resolution and a further 1000 steps of the simulation is run. A flowchart
illustrating the protocol is shown in Fig. 13.6.

Fig. 13.6 Flowchart illustrating the PROTINFO de novo prediction protocol. We start with a
sequence and generate main chain conformations derived from distribution of �,� preferences
for residues in a protein. The move sets include a combination of moves where the magnitude of
change in the fold is not restricted and local moves where only small conformational changes (as
measured by RMSD) are allowed. Many trajectories are generated and minimized using Monte
Carlo simulated annealing. The minimization is primarily a fast version of RAPDF, a hydrophobic
compactness function, and a bad contacts function. Once a set of conformations is generated,
filtering is applied using many different filters and scoring functions to produce one or a few final
conformations
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Fig. 13.7 Performance of PROTINFO on two CASP6 targets, T0215 and T0281. C� RMSDs
for the entire protein are shown for the best model generated during the simulations and the final
model picked. In both cases the major structural elements are accurately placed and the major
source of error is in the terminal floppy coil regions.

Selection occurs using a combination of 14 different physics-based and
knowledge-based energy functions. The functions are used as filters where the best
scoring conformers are retained. The cutoffs and order of application for each of the
functions were determined by optimization on a large set of simulated conformers
of different targets. The enrichment of this protocol for CASP6 targets is shown in
Fig. 13.4. After filtering, iterative density is used to rank the remaining conformers
and to choose the top three models. Two more conformers are obtained by K-means
clustering and choosing the center of the two largest clusters. Figure 13.7 shows the
quality of some models obtained using the procedure at CASP6.

13.2.9 Other de Novo Structure Prediction Protocols

Several other de novo structure prediction protocols were judged to perform well in
the most recent meeting on the Critical Assessment of Techniques for Protein Struc-
ture Prediction (CASP-6) (Moult et al. 2005). These include the Rosetta method of
the Baker Group (Bradley et al., 2005a), FRAGFOLD3 of the Jones-UCL Group
(Jones et al., 2005), the SAM-T04 method of Karplus and colleagues (Karplus et al.,
2005), the “FRankenstein’s Monster” method of the GeneSilico Group (Kosinski
et al., 2005), and the CABS method of Kolinski and Bujnicki (Kolinski and Bujnicki,
2005). As mentioned earlier, a commonality among this category of methods is the
emphasis on using fold-recognition techniques to generate libraries of fragments,
from small fragments of fewer than five consecutive residues to large fragments up



SVNY330-Xu-Vol-II October 6, 2006 23:19

444 Ling-Hong Hung et al.

to the level of supersecondary structures, for a given protein sequence. A variety
of MCSA techniques are then used to select and assemble these fragments in a
jigsawlike fashion to generate a complete conformation. In addition, in the Rosetta
method, a technique based on identifying and constraining residue-pair orientation
enables advances in sampling nonlocal beta-sheet structures, a difficult subproblem
in de novo prediction. Their high-resolution refinement protocol further allows re-
finement of small, nativelike low-resolution structures to near-native resolution. As
a result of these additional ingredients, Rosetta can produce high-resolution predic-
tion of less than 1.5 Å for small protein domains of less than 85 residues in some
cases (Bradley et al., 2005b), and is currently judged the most successful among this
category of de novo prediction methods.

Many difficulties in consistently producing reliable de novo structure prediction
remain. For example, prediction of large proteins and proteins of complex topolo-
gies with many nonlocal residue–residue contacts still presents major challenges.
Dependency on reasonably accurate domain parsing and secondary structure predic-
tion is the Achilles’ heel of most prediction protocols. Target T0281 of CASP6 is a
good example of this. This was the best modeled target of the ones that did not have
obvious templates and ROSETTA was able to achieve a 1.6-Å model. The secondary
structure predictions for this target were ambiguous and initially almost all groups,
including the ROBETTA server, submitted some models using a two-strand topology
rather than the correct three-strand topology, which resulted in models >6 Å from
the experimental structure.

Finally, examples of de novo structure prediction methods that are more the-
oretical and physics-based can be found in the works of Wolynes and colleagues
(Onuchic and Wolynes, 2004; Wolynes, 2005), Daggett and colleagues (Daggett and
Fersht, 2003; Beck and Daggett, 2004), and Head-Gordon and colleagues (Crivelli
et al., 2002; Head-Gordon and Brown, 2003). Compared with the approaches de-
scribed in the previous paragraph, this category of methods encounters substantially
greater challenges because they have much less reliance on fold recognition and
other bioinformatic information.

13.3 Discussion

13.3.1 Faster Computers and Larger Databases

An often-stated tenet of modern computing is Moore’s law which postulates that
computational power increases exponentially with time (Moore, 1965). This has
been paralleled by the exponential growth of the PDB (Berman et al., 2004). Both
of these developments have been instrumental in improving the effectiveness of
protein structure prediction techniques. Increased computational power permits all-
atom representations and more numerous, longer, and finer searches. Increases in the
size of the PDB increase the number of fragments available for fragment assembly
libraries. Knowledge-based energies, such as RAPDF, also benefit from a larger PDB
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as do secondary structure predictions. A good example of these effects is the evo-
lution of FRAGFOLD which started as a simple fragment assembly method using a
reduced representation (Jones, 2001; Jones and McGuffin, 2003). Its present incar-
nation uses secondary structure selected fragments with an all-atom representation
and optimizes side-chain rotamers in parallel with the fragment assembly.

13.3.2 Future Directions

Of the two major components of protein structure prediction, conformational search
methodology has been helped more by the computational and database technology
improvements, compared to energy function methodology. The major limitation of
de novo structure prediction techniques remains the quality of the energy functions.
One area where this is much less of a problem is the marriage of de novo protein
structure prediction techniques and limited experimental data to obtain structures.
For example, in the case of NMR, with good unambiguous data, structures have long
been obtained even with physics-based energies and molecular dynamics searches
(Brunger et al., 1986). Hybrid methods (Rohl and Baker, 2002; Li et al., 2003) using
knowledge-based energies and more efficient global search techniques promise to
lower threshold of quality and quantity of NMR data required to obtain a structure.
This idea of bypassing the energy function bottleneck by using limited experimental
data can be applied in principle to any methodology and is becoming an important
application of theoretical de novo techniques to practical problems.

Due to the increased size of the PDB and the ongoing structure genomics ini-
tiatives, the chance of finding a template to a given target is steadily increasing and
will continue to do so. The refinement of template-derived structures is thus becom-
ing an important problem. However, until recently (Qian et al., 2004), refinement
of template-based structures using de novo techniques has been largely limited to
building loops between homologous elements. Refining the homologous elements
themselves has proven to be difficult to do consistently. The problem is a bit different
from de novo prediction since the starting point is a relatively good conformation,
making it more of a local rather than global optimization problem. Some of the global
energies and search strategies used for de novo prediction remain effective for local
optimization (e.g., RAPDF and continuous move sets). Other energies and search
strategies that are not effective or feasible for the global case (e.g., physics-based
energies and molecular dynamics) may work better in the local case.

Finally, the energy functions themselves are slowly improving. The increase
in the size of the PDB combined with increased computational power means that
more complex knowledge-based energies are now feasible. For example, rather than a
simple pairwise distance function, a secondary structure-dependent distance function
or a ternary distance function is now possible. Improved physics-based energies
are also being developed with more sophisticated electrostatic and solvent models
which, while still too computationally expensive for global structure prediction, may
be useful in refinement. The protein structure prediction problem has not yet been
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solved, but after 40 years in the wilderness, the promised land may finally be within
sight.
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