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One of the general paradigms for ab initio protein structure
prediction involves sampling the conformational space such
that alarge set of decoy (candidate) structures are generated
and then selecting native-like conformations from those
decoys using various scoring functions. In this study, based
on a physical/geometric approach first suggested by
Banavar and colleagues, we formulate a knowledge-based
scoring function, which uses the radii of curvature formed
among triplets of residues in a protein conformation.
By analyzing its performance on various decoy sets, we
determine a good set of parameters—the distance cutoff
and the number of distance bins—to use for configuring such
a function. Furthermore, we investigate the effect of using
various approaches for compiling the prior distribution on
the performance of the knowledge-based function. Possible
extensions to the current form of the residue triplet scoring
function are discussed.
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Introduction

In protein structure prediction, a given sequence with one or
more known homologs whose conformations have been
experimentally determined can be modeled with comparative
modeling techniques (Blundell ef al., 1987; Bajorath et al.,
1994; Johnson et al., 1994; Sali 1995; Sanchez and Sali,
1997). On the other hand, a sequence with no obvious
homologs is often modeled using ab initio methods (Friesner
and Gunn, 1996; Jones 1997; Levitt et al., 1999). One of the
general paradigms for ab initio structure prediction involves
sampling the conformational space such that a large set of
‘decoy’ structures are generated and then selecting native-like
conformations from those decoys using various scoring
functions (Samudrala et al., 1999; Samudrala and Levitt,
2002). Since the first papers on protein structure prediction
appeared some 30 years ago, both conformational space
sampling and scoring function design have remained as major
challenges in ab initio structure prediction to this day (Moult
et al., 1997, 1999, 2001, 2003).

There are two broad categories of scoring functions. The
first category of functions are largely based on some aspects
of the known physics of molecular interaction, such as the
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van der Waals force, electrostatics, and the bending and
torsional forces, to determine the energy of a particular
conformation (Brooks et al., 1983; Weiner et al., 1986;
Jorgensen and Tirado-Rives, 1988; Nemethy er al., 1992;
Cornell et al., 1995; MacKerell et al., 1998). The second
category of functions are knowledge-based. Each of these
knowledge-based functions tries to capture some aspects of
the protein native conformations, such as the tendency of a
certain amino acid to be exposed or buried relative to the
solvent, or to be part of the helix, strand or coil local
structure and so on. These knowledge-based functions are
compiled based on the statistics of a database of
experimentally determined protein structures (Wodak and
Rooman, 1993; Sippl 1995; DeBolt and Skolnick, 1996; Gilis
and Rooman, 1996; Jernigan and Bahar, 1996; Zhang et al.,
1997; Samudrala and Moult, 1998). Interaction between these
two categories of functions has resulted in a fertile ground for
the experimentation and construction of new scoring
functions. In this study, based on a physical/geometric
approach first suggested by Banavar and colleagues (Maritan
et al., 2000; Banavar et al., 2002, 2003a, b), we formulate
and analyze an analogous knowledge-based scoring function
(denoted as the residue triplet scoring function), which
involves the radii of curvatures formed among triplets of
residues in a protein conformation. We also investigate the
effect of using various approaches for compiling the prior
distribution on the performance of the knowledge-based
function.

The paper is organized as follows. We first briefly review
the physical/geometric approach of Banavar and colleagues.
We then describe the construction of a knowledge-based
scoring function which incorporates some key features from
that of Banavar ef al. The performance of the knowledge-
based function in structure prediction is evaluated through its
application to 41 decoy sets of various quality. Finally, we
propose some possible extensions to the current form of the
scoring function.

Theoretical background and methods

The three-body potential of Banavar et al.

In Maritan et al. (2000) and Banavar et al. (2002, 2003a, b),
Banavar and colleagues viewed a protein chain as a system of
discrete particles and considered interactions among any three
particles through a three-body potential. By drawing a circle
through any given three particles, the radius of curvature
could be determined and was used as the input variable to the
potential function. In their Monte-Carlo simulation of protein
chain folding, a Lennard-Jones type function was chosen as
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the potential. It was demonstrated that protein-like structures,
such as short segments of helices with special pitch-to-radius
ratio, sheets and hairpins, were naturally obtained as ground
states in their simulations.

A knowledge-based formulation of the three-body potential

Our formulation of the knowledge-based residue triplet
potential is analogous to the standard pairwise residue
distance-dependent scoring function, with two main modifi-
cations. First, the two-body potential in the pairwise case is
replaced by a three-body potential. Second, the pairwise
residue distances, which form inputs to the score calculation
for a given conformation, are replaced by the radii of
curvature of residue triplets. It should be noted that a residue
triplet does not necessarily consist of three residues
consecutive in sequence, just as a residue pair does not
necessarily correspond to a pair of neighboring residues in
the two-body potential. Precisely, in terms of the Bayesian
statistics formalism as described in Samudrala and Moult
(1998), we view a given set of conformations for a protein
sequence as comprising of two subsets: a subset of correct
conformations {C} and a subset of incorrect conformations
{I}. For a given conformation, we calculate the probability
that it belongs to the subset of correct structures {C}, given
some properties of the conformation. In our present case,
these properties are the set of distances {rabc} where ), o . isthe
radius of curvature formed by residues i, j and k of re51due types
a, b and c. The probability is denoted as P(C |{rabc}) Using
Bayes’ theorem, one obtains

P(C)P({r¥ }[C) = P({ri P(CI{r% ) (1)

where P({r’; }|C)isthe (posterlor) probability of observmg the
set of radii of curvature {r ,If }in a correct structure, P({r, abc}) is
the (prior) probability of observing such a set of radii in any
correct or incorrect structure and P(C) is the probability that any
structure picked at random is a member of the correct set. To
ensure computational feasibility, we make a simplifying
assumption that the radii are independent of one another:

Uk ljk ljk ljk
} | C HP abc abv P abc

abc
ijk i,jk
Combining Equations (1) and (2) gives
P(r3.1C)

P(C)HP(L;;() (3)

i,j.k abc

P(Cl{r}) =

Equation (3) suggests a scoring function S, which is
proportional to the negative log conditional probability that
the given structure is correct, given a set of radii of curvature:

l]k

Uk lo abc|C)> 4
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Before one can use Equation (4) as a scormg function, the
statistics for the posterlor probability P( .|C) and the prior
probability P(rY L,) need to be complled Specifically, to
compute the statistics for P(r am‘c) we tabulate the radii of
curvature generated by residue triplets in a set of experimentally
determined conformations available from the Protein Data Bank
(PDB) (Westbrook et al., 2003; Bourne et al., 2004). This set of
conformations was created by first selecting all proteins that
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appear in the e-value filtered ASTRAL SCOP genetic domain
sequence subset list with the threshold e-value set at 10~*
(Chandonia et al., 2004). Subsequently, we retained proteins
whose lengths are less than 300 residues (primarily for compu-
tational efficiency) and removed proteins whose PSI-BLAST e-
values are less than 2 with respect to a set of 41 protein sequences
we later use for test decoy set generation and scoring function
testing. This results in a total of 3150 structures (hereafter
denoted as the database of solved protein structures). We
then evaluate the quantity

N(rabt)
= N(rao) ®)

where N(r,;.) is the number of occurrences of triplets with
residue types a, b and ¢ whose radius of curvature is in
the distance bin r. For compilation of the statistics of P( a}];)
we attempt three approaches in this study. In the first approach,
for each protein sequence in the database of the solved protein
structures, we use an ab initio conformational space sampling
protocol to generate 10 decoy structures, as a result yielding a
total of 3150 x 10=31 500 decoy structures (hereafter denoted as
the database of decoy structures). The ab initio conformational
space sampling protocol consists of a Monte-Carlo method with
simulated annealing procedure, with move set based on the
standard fragment replacement scheme, namely, the existing
conformation of three consecutive residues at a random position
is replaced by the torsion values of three residues with identical
sequence from an experimentally determined structure (Simons
et al., 1997; Hung and Samudrala, 2003). The energy function
used to generate the decoys is a combination of the all-atom
distance-dependent function, a hydrophobic compactness func-
tion and a bad contacts function (Samudrala et al., 1999;
Samudrala and Levitt, 2002). We use the database of the
31500 decoy structures to determine the prior distribution
P(r.,.) analogous to the way the database of the solved structures
is used in Equation (5) for the posterior distribution:

N(rabc)
Zr N(rubC)

As a second approach, we apply the mixture method
described in Samudrala and Moult (1998), i.e. instead of
using the database of the 31500 decoy structures, the
database of the 3150 solved structures is employed and
averaging is done across the various residue types when
determining the prior distribution. Specifically, P(r,.) is
calculated by

P(rly,|C) =

Tabe

P(rabc) = (6)

Zabc N(rabt‘)
Zr Eahc N(rabt')

where >, N(ru.)is the number of contacts among all residue
triplets in a particular distance bin r in the database of the solved
structures, regardless of residue types. Finally, as a third
approach, Equation (7) is again employed to compile the stat-
istics of the prior distribution, i.e. averaging is again performed
across the various residue types. However, the compilation is
done on the database of the 31 500 decoy structures, instead of
the 3150 solved structures.

P(rape) = P(r) = ()

Generation of test decoy sets and evaluation of the residue
triplet scoring function

To evaluate the performance of the residue triplet scoring
function in distinguishing native-like from non-native



conformations, we apply it to 41 test decoy sets of various
quality. The 41 test decoy sets correspond to 41 protein
sequences, some of them taken from the second through fifth
Community Wide Experiments on the Critical Assessment of
Techniques for Protein Structure Prediction (Moult er al.,
1997, 1999, 2001, 2003) and the rest randomly picked from
the PDB. Each decoy is generated using the same
conformational space sampling protocol described in the
preceding sub-section. Each run consists of 100 000 iterations
using the fragment replacement move set and yields 10 decoys
at the end of the run. One thousand seeds are used to generate
10000 decoys for each test decoy set.

Table I gives the PDB identifiers and the SCOP
classifications of the 41 protein sequences used in generating
the test decoy sets. Also included is the C, root mean squared
deviation (RMSD) of the best decoy relative to the
corresponding native structure in each test set. Among
them, 15 test decoy sets have their best structures below 6 A

Table I. List of the protein sequences used in generating the test decoy sets

Protein SCOP classifications Length Min. RMSD
d1bOn-A2 a.35.1.3 (A:1-68) 68 2.729
d1b33-N d.30.1.1 (N:) 67 7.349
dIb34-A b.38.1.1 (A:) 80 7.943
dlb4b-A d.74.2.1 (Ay) 71 5.506
d1b79-A a.81.1.1 (A:) 102 5.29
dlck9-A d.79.3.1 (A) 104 7.661
dlctf d.45.1.1 (-) 68 4.37
dldgn-A a.77.1.1 (A:) 89 4.482
d1dj8-A a.57.1.1 (A:) 79 5.092
d1dgj-A d.51.1.1 (AY) 74 4.902
dle68-A a.64.2.1 (A:) 70 3.794
dleai-C g.22.1.1 (C:) 61 6.914
dledz-A2 c.58.1.2 (A:3-148) 146 9.277
dlefu-B3 a.5.2.2 (B:1-54) 54 5.247
dlev0-A d.71.1.1 (A:) 58 6.641
d1f53-A b.11.1.4 (A:) 84 9.123
dlfe3-A a.4.6.3 (A:) 119 8.184
difmt-Al b.46.1.1 (A:207-314) 108 7.385
dlg6e-A b.11.1.6 (A:) 87 7.891
dlg7d-A a.71.1.1 (A:) 106 5.867
dlgoi-Al b.72.2.1 (A:447-498) 52 6.111
dlgut-A b.40.6.1 (A:) 67 6.459
dIh5p-A b.99.1.1 (A:) 95 8.223
d1h8a-C1 a.4.1.3 (C:87-143) 57 2.941
dlijy-A a.141.1.1 (A:) 122 7916
dlira-Y1 b.1.1.4 (Y:1-101) 101 8.317
dliwg-Al d.58.44.1 (A:38-134) 97 5.7
dljju-A3 b.1.18.14 (A:274-351) 78 6.614
dljos-A d.52.7.1 (Ay) 100 5.302
dljyg-A a.60.11.1 (A:) 69 3.471
d1k2y-X2 c.84.1.1 (X:155-258) 104 6.889
dlktz-B 2.7.1.3 (B:) 106 8.586
d191-A a.64.1.1 (A2) 74 4.041
dlmsp-A b.1.11.2 (A:) 124 9.932
dIn69-A a.64.1.3 (A:) 78 6.753
dlqu6-Al d.50.1.1 (A:1-90) 90 8.597
dlrie b.33.1.1 () 127 9.548
dlsra a.39.1.3 (-) 151 8.781
dlsro b.40.4.5 (-) 76 6.031
d2igd d.15.7.1 (-) 61 6.508
d7gat-A 2.39.1.1 (A) 66 7.248

Each row lists the PDB identifier of the sequence, the SCOP classification, the
length of the protein sequence and the C,, RMSD of the best decoy structure
relative to the native conformation in the test decoy set. Fifteen test decoy sets
have their best structures below 6 A C,, RMSD relative to their corresponding
native conformations. Twenty-four test decoy sets have their best structures
below 7 A C, RMSD relative to their corresponding native conformations.

Residue-triplet based scoring function

C, RMSD relative to their native conformations. (Twenty-
four decoy sets have their best structures below 7 A C,
RMSD relative to their native conformations.) We denote
those 15 sets as the high quality test decoy sets.

We use two measures to evaluate the quality of the residue
triplet scoring function. This first measure is the enrichment
ratio. After the scoring function is applied to a test decoy set,
we count the number of decoys (denoted as a) which are in
the top 10% both in terms of their residue triplet scores and
their C,, RMSD relative to the native structures. The expected
number in a random distribution is 10% X 10% X {number of
decoys in the set} (denoted as b). The enrichment ratio is a/b.
A value above 1 indicates enrichment over the random
distribution. The second measure is obtained via the receiver-
operating characteristic (ROC) analysis. A decoy structure is
a priori classified as true positive if its C,, RMSD relative to
the native structure is in the top 10% among all the decoys in
the test set. The lower 90% decoy structures are classified as
true negative. After the residue triplet score has been
computed for each decoy in a test set, we start with the best
scoring decoy and expand the collection of the ‘native-like’
decoys by adding one decoy at a time. The true positive
fraction and the false positive fraction (FPF) are determined
for each successive step and plotted against each other to
generate the ROC curve. The area under a truncated ROC
curve (with 0 =< FPF =< 0.1 in this study) generated by the
residue triplet scoring function (denoted as Ay), divided by
the expected area under a truncated ROC curve correspond-
ing to the random distribution (denoted as A,), indicates the
improvement of the scoring function over the random
distribution. The percentage improvement is simply 100% x
(As — AD/A..

Selection of the distance cutoff and the
number of distance bins

Before one can compile the statistics for the posterior
probability P(r,,/C) and the prior probability P(r,,.) using
Equations (5-7), the distance cutoff, the number of distance
bins and the bin sizes have to be fixed. It is not clear a priori
what the best values for these parameters are. Thus, we try a
number of possibilities in this study. Distance cutoffs from
12 to 16 A and numbers of bins ranging from 4 to 11 are
tested. Bin widths are determined in the following manner:
Figure 1 depicts the distribution of the radius of curvature for
triplets (regardless of residue types) observed in the database
of the solved structures. If, for example, we fix a cutoff
distance of 15 A and the number of bins to be five, then we
choose the bin widths in such a way that each bin will have
approximately equal area underneath the distribution curve,
holding roughly the same number of observed radii. There are
of course other ways to sub-divide the bin sizes. We perform
the subdivision in this particular manner mainly to restrict the
search space for finding reasonably good parameter values.

Results and discussion

A good parameter set for configuring the residue triplet
scoring function

Figures 2a, 3a and 4a illustrate the various enrichment ratios
that the residue triplet scoring functions produce and
Figures 2b, 3b and 4b show the corresponding percentage
improvement in  the  truncated ROC  measure.
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Fig. I. Distribution of the radii of curvature for all triplets. Triplets are obtained
from a database of solved protein structures and are considered regardless of
residue types. In this example, we sub-divide the area under the distribution
curve into 5 bins, with the distance cutoff at 15 A. Each bin has approximately
equal area, which means that they hold roughly the same number of observed
radii.

(Figures 2—4 extract and summarize data in Supplementary
Tables I-III, respectively available at PEDS online.) Figure 2
illustrates the performance of the scoring functions [haere-
after denoted as the residue specific decoy structure based
triplet (RSDT) functions] that employ a residue type specific
compilation of the prior distribution P(r,;.) derived from the
database of the 31500 decoy structures. In Figure 3, the
scoring functions [hereafter denoted as the residue non-
specific solved structure based triplet (RNST) functions] use
a residue type non-specific compilation of the prior
distribution derived from the database of the 3150 solved
structures. In Figure 4, a residue type non-specific
compilation of the prior distribution derived from the
database of the 31500 decoy structures is employed in
constructing the scoring functions [hereafter denoted as the
residue non-specific decoy structure based triplet (RNDT)
functions].

Overall, focusing on the performances of the scoring
functions on the high quality test decoy sets (i.e. the 15 test
decoy sets that contain structures of less than 6 A C,, RMSD
relative to the native conformations), by comparing
Figures 2(a and b), 3(a and b) and 4(a and b), we see that
a good set of parameters for the residue triplet scoring
function is a distance cutoff of 14 A with 7 distance bins
(alternatively, a distance cutoff of 14 A with 8 bins also gives
similar performance) and with the prior distribution P(r,.)
generated with a residue type specific compilation of the
database of the 31500 decoy structures. This produces an
enrichment ratio of ~1.33 and an ROC improvement of
~45%. Analysis based on the standard leave-one-out cross-
validation yields similar results, with an average enrichment
ratio of 1.32 and an average ROC improvement of 42%. For
test decoy sets of lesser quality, this particular configuration
of the scoring function maintains the overall enrichment ratio
above 1.21 and the ROC improvement above 30% [numerical
values detailed in Supplementary Tables Ia(ii—v) and Ib(ii—v)
available at PEDS online].
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Fig. 2. Performance of the RSDT functions. Shown are (a) the average
enrichment ratios and (b) the percentage improvement in the ROC measure
achieved by the RSDT functions when they are applied to the high quality test
decoy sets. The RSDT functions are constructed with a residue type specific
compilation of the prior distribution derived from the database of 31 500 decoy
structures. Distance cutoff ranging from 12 to 16 A and the number of bins
ranging from 4 to 11 are examined. Configurations with a distance cutoff of 14 A
with 7 distance bins and with a distance cutoff 14 A with 8 distance bins give the
best results.

Choice of the prior distribution

By inspecting Figures 2—4, we observe that switching from
using a prior distribution P(r,,.) generated with a residue
type specific compilation of the database of decoy structures,
to the one generated with a residue non-specific compilation
of the database of solved structures and the one generated
with a residue non-specific compilation of the database of
decoy structures, depresses the performance of the residue
triplet scoring function in general. For example, for the high
quality decoy sets, the best enrichment ratios are ~1.15
(Figure 3a) and ~1.18 (Figure 4a) and the best ROC
improvements are ~17% (Figure 3b) and ~23% (Figure 4b)
for the functions configured with the latter two prior
distributions. These values are lower than the enrichment
ratio of 1.33 and the ROC improvement of 45% for the
RSDT function.
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Fig. 3. Performance of the RNST functions. Shown are (a) the average
enrichment ratios and (b) the percentage improvement in the ROC measure
achieved by the RNST functions when they are applied to the high quality test
decoy sets. The RNST functions are constructed with a residue type non-specific
compilation of the prior distribution derived from the database of 3150 solved
structures. Distance cutoff ranging from 13 to 15 A and the number of bins
ranging from4 to 11 are examined. Comparing with Figure 2, we observe that the
RNST scoring functions generally have lower performances.

The best performing RSDT, RNST and RNDT scoring
functions are selected from Figures 2—4 and their enrichment
ratios and ROC percentage improvements are plotted in
Figures 5 and 6 across test decoy sets of various quality. The
performance differences among the RSDT, RNST and RNDT
functions depicted in these two figures indicate that a residue
type specific derivation of the prior distribution can boost the
accuracy of the scoring function over one based on a residue
type non-specific derivation. Furthermore, according to the
figures, the performance of the RNDT function seems to be
slightly better than that of the RNST function. This
observation suggests the importance of using the same
conformational space sampling protocol for creating test
decoy sets as well as for generating the database of decoy
structures for prior distribution derivation, at least in the
context of constructing the residue triplet scoring function.
Despite the above-mentioned disadvantage, the RNST
scoring function is still useful in instances where a priori

Residue-triplet based scoring function
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Fig. 4. Performance of the RNDT functions. Shown are (a) the average
enrichment ratios and (b) the percentage improvement in the ROC measure
achieved by the RNDT functions when they are applied to the high quality test
decoy sets. The RNDT functions are constructed with a residue type non-specific
compilation of the prior distribution derived from the database of 31 500 decoy
structures. Distance cutoff ranging from 13 to 15 A and the number of bins
ranging from4to 11 are examined. Comparing with Figure 2, we observe that the
RNDT scoring functions generally have lower performances.

information about the conformational space sampling
protocol used in generating the test decoy sets is either
not known or not utilized, since only the database of solved
structures is needed in compiling the statistics of the prior
distribution. A good way to further explore and understand
the comparative effectiveness of the three approaches for
prior distribution estimation is to study them in the context of
other knowledge-based functions (for example, in the
construction of the pairwise residue distance-dependent
scoring function).

Comparing the performance of the residue triplet scoring
function to other established functions

To provide a rough yardstick for measuring the performance
of the residue triplet scoring function, we apply the all-atom
distance-dependent conditional probability discriminatory
function [denoted as the RAPDF function in Samudrala
and Moult (1998)] to the 41 test decoy sets. The RAPDF
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Fig. 5. Performance of the various types of residue triplet scoring functions.
Triplet functions are evaluated using the average enrichment ratios on test decoy
sets of various quality. For example, the circle at coordinate (6 A,1.332)
indicates that the RSDT function configured with a distance cutoff of 14 A
and 7 distance bins achieves an average enrichment ratios of 1.332 for the test
decoy sets that contain structures of less than 6 A C, RMSD relative to the native
conformations. From Figure 3a, we select the best performing RNST scoring
function. The left-pointing triangles in the current figure indicate the average
enrichment ratios achieved by that function. The best performing RNDT scoring
function is analogously chosen from Figure 4a, represented by the stars in
current figure. We also include the performance of one other scoring function
in the figure. The downward pointing triangles correspond to the all-atom
distance-dependent conditional probability discriminatory function, a two-
body potential. Overall, the RSDT functions give the best performances.

function has been studied and compared with other functions
in the literature [e.g. see Lu and Skolnick (2001), de Bakker
et al. (2003) and Zhang et al. (2004)]. In the present study,
this function is compiled with the database of the 3150 solved
structures. The resulting enrichment ratios and percentage
improvements in the ROC measure for the RAPDF function
are shown in Figures 5 and 6, respectively. These figures
show that the residue triplet functions with the configuration
of a distance cutoff of 14 A with 7 bins and of a distance
cutoff of 14 A with 8 bins both perform reasonably well in
comparison.

In addition, we also apply a local-triplet (LT) scoring
function described in Lezon er al. (2004) to the test decoy
sets. The LT function uses a specially designed five-letter
alphabet to represent the Ramachandran angles and evaluates
a given decoy with a two-step process, in which a sequence—
structure and a structure—structure mapping of the LTs are
performed. It has been shown to have produced good results
in the fold recognition of coarse-grained protein tertiary
structures. In the present study, for the high quality test decoy
sets, this function yields an average enrichment ratio of 1.10
and an average ROC percent improvement of 18.1%.
Comparing these results with Figures 5 and 6 again confirms
that the residue triplet functions with the configuration of a
distance cutoff of 14 A with 7 bins and of a distance cutoff of
14 A with 8 bins perform well.

Examination of low counts

In order for the posterior probabilities P(er]fc|C) estimated
with Equation (5) and the prior probabilities P(r,,.) estimated
with Equation (6) to be statistically meaningful, there needs
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Fig. 6. Performance of the various types of residue triplet scoring functions.
Triplet functions are evaluated using the average ROC percent improvements on
test decoy sets of various quality. For example, the circle at coordinate
(6 A,44.5%) indicates that the RSDT function configured with a distance
cutoff of 14 A and 7 distance bins achieves an average percent improvement
of 44.5% for the test decoy sets that contain structures of less than 6 AC,RMSD
relative to the native conformations. From Figure 3b, we select the best
performing RNST scoring function. The left-pointing triangles in the current
figure indicate the average percent improvement achieved by that function.
The best performing RNDT function is analogously chosen from Figure 4b,
represented by the stars in the current figure. We also include the performance of
one other scoring function in the figure. The downward pointing triangles cor-
respond to the all-atom distance-dependent conditional probability discrimin-
atory function, a two-body potential. Overall, the RSDT functions give the best
performances.

to be sufficient counts for the denominator ), N(ru.) for
each residue triplet type (a,b,c). Our results indicate that for
the RSDT function with a distance cutoff of 14 A and 7 distance
bins, in the posterior probabilities estimation based on the
database of the solved structures, the triplet type tryptophan—
tryptophan—tryptophan has the count of 4717, the lowest among
all triplet types. With 7 distance bins, this gives an average of
~674 counts per bin. For the prior probabilities estimation based
on the database of the decoy structures, the triplet type
tryptophan—tryptophan—tryptophan has the count of 48 177,
again the lowest among all triplet types. With 7 distance bins,
this gives an average of ~6882 counts per bin. Thus, in
both cases, the counts are sufficiently high for Equations (5)
and (6) to provide statistically valid estimates of the respective
probabilities. Similar low count results are also obtained for the
RNST and RNDT functions.

Conclusion

In this study, we construct and analyze a residue triplet
knowledge-based scoring function. The scoring function is
inspired by the previous work of Banavar and colleagues,
who studied chain folding using a physical/geometric
approach in which the inputs to their Lennard-Jones type
potential were the radii of curvature of residue triplets. Their
computer simulations showed a number of interesting results,
e.g. naturally obtaining ground states with protein-like local
structures, such as helices with specific pitch-to-turn ratio,
sheets and hairpins.



Our formulation of the residue triplet scoring function
follows the standard approach used in constructing the
pairwise residue distance-dependent potential, with two
modifications: (i) the two-body potential is replaced by a
three-body one and (ii) the pairwise distances are replaced by
the radii of curvature corresponding to residue triplets. Three
different approaches for estimating the prior distribution of
the radius of curvature are tested. Also tested are the use of
various distance cutoffs and numbers of bins in constructing
the knowledge-based potential. To evaluate the performances
of the various possible configurations, we generate 41 test
decoy sets of different quality and apply the various
configurations of the scoring function on the test decoy sets.
Our numerical experiments show that a distance cutoff of
14 A, with either 7 or 8 distance bins and with the statistics
of the prior distribution of the radius of curvature derived
from a database of decoy structures in a residue type specific
manner, produces good results.

We discuss briefly some possible modifications and
extensions to the current form of the residue triplet scoring
function. First, instead of using a straight 14 A distance cutoff
across the different residue types, the distance cutoff can be
chosen in a residue type specific manner. That is, for given
residue triplets of specific residue types a, b and ¢, one can
compile the statistics and observe the log-odd score S(r,;.) of
such a triplet type as a function of the radius of curvature
Fupe- A good cutoff value for the triplet type will correspond
to the radius of curvature at which this function decays to
zero. Second, the residue-based function can be augmented to
an all-atom form. Using a detailed atomic description for
protein confirmations may yield a more accurate scoring
function for discriminating native-like from non-native
conformations. Third, as suggested in Banavar er al.
(2003b), residue quadruplets instead of triplets can be used
to construct an analogous scoring function. In such a case, the
radius of curvature will be replaced by the radius of the
sphere formed by four residues. Both the second and the third
extensions require increased computing power, but they are
still computationally tractable for small proteins with sizes
<120 residues. Finally, we note that in the residue triplet
formulation, a large radius of curvature can be generated
either by three neighboring residues subtending an angle
close to 180°, or by three residues distant from one another
and forming an equilateral triangle. The fact that the two
configurations are not distinguishable in the triplet formu-
lation suggests that it is beneficial to combine the residue
triplet scoring function with a two-body distance-based
scoring function to further enhance the decoy discrimination
ability. A detailed study of how to combine the residue triplet
function with other potentials will be presented elsewhere.
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