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ABSTRACT
Motivation: It is commonly believed that sequence determines struc-
ture, which in turn determines function. However, the presence of
many proteins with the same structural fold but different functions sug-
gests that global structure and function do not always correlate well.
Results: We propose a method for accurate functional annotation,
based on identification of functional signatures from structural align-
ments (FSSA) using the Structural Classification of Proteins (SCOP)
database. The FSSA method is superior at function discrimination
and classification compared with several methods that directly inherit
functional annotation information from homology inference, such as
Smith–Waterman, PSI-BLAST, hidden Markov models and structure
comparison methods, for a large number of structural fold families. Our
results indicate that the contributions of amino acid residue types and
positions to structure and function are largely separable for proteins
in multi-functional fold families.
Availability: The FSSA software is available at http://software.co
mpbio.washington.edu/fssa
Contact: ram@compbio.washington.edu
Supplementary information: http://data.compbio.washington.edu/
fssa/bioinformatics_supplement

INTRODUCTION
The success of structural genomics initiatives requires the develop-
ment and application of tools for structure analysis, prediction and
annotation (Goldsmith-Fischman and Honig, 2003). Once the struc-
tures are determined experimentally, one of the biggest challenges is
to infer their biological and physiological functions. Several methods
have been used widely to infer functional knowledge from structural
information, when sequence data alone are not enough to infer func-
tion confidently (Thornton et al., 2000; Teichmann et al., 2001). For
a given structure, comparison of structural folds (Taylor and Orengo,
1989; Shindyalov and Bourne, 1998; Holm and Sander, 1999; Ortiz
et al., 2002) or sequential structural motifs (Jonassen et al., 1999,
2002; Kasuya and Thornton, 1999; Jones et al., 2003) with other
proteins with known function may give insights about its function.
In addition, the essence of biochemical function can be captured
from structural motifs, independent of the overall fold (Kobayashi
and Go, 1997; Kleywegt, 1999; Barker and Thornton, 2003; Jambon
et al., 2003; Stark and Russell, 2003; Pazos and Sternberg, 2004).
With the development of novel algorithms (Russell and Barton, 1992;
Yang and Honig, 2000; Guda et al., 2001; Leibowitz et al., 2001b;
Dror et al., 2003), multiple structural alignments may also be used to
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infer function, with better discrimination power than pairwise com-
parison methods (Leibowitz et al., 2001a). However, in the absence
of significant sequence and structure similarities, other prediction
methods must be used: for example, the size of clefts on the surface
of a protein may be used to predict enzyme function (Laskowski
et al., 1996), while protein surface patches may be used to analyze
protein–protein interactions (Jones and Thornton, 1997).

Although it is commonly believed that structure determines bio-
logical function, protein global structure and function do not always
correlate well with each other, since only a limited number of struc-
tural folds are expected to be found in nature (Orengo et al., 1999).
Given the large number of functions exerted by cellular proteins, this
suggests that some diverse and distinct functions must be derived
from the same structural folds (Anantharaman et al., 2003). Todd
et al. (1999, 2001, 2002) have shown examples of a variety of bio-
chemical functions that are performed by proteins with the same
structural fold, or even by members of a single homologous family.
The TIM barrel proteins, which have eight alpha/beta motifs fol-
ded into a barrel structure, are the most frequently observed folds in
nature (Branden, 1991), and are probably the most famous example
of a multi-functional fold family (Nagano et al., 2002). The Struc-
tural Classification of Proteins (SCOP) scheme (Murzin et al., 1995)
is a widely used classification method that classifies protein struc-
tures into hierarchical levels of class, fold, superfamily and family
to embody structural and evolutionary relationships. Proteins within
the same SCOP superfamily suggest common evolutionary origin,
and there are 26 superfamilies within the TIM barrel fold. Some
other famous and well-studied multi-functional fold families include
proteins with the immunoglobulin fold, the RRM-like fold, the HUP
fold and the Rossman fold.

The fact that multi-functional fold families exist in nature suggests
that the contribution of amino acid residue types and positions to pro-
tein structure and function may be largely separable. The analysis of
local structure profiles within a fold family, in the context of protein
function, may thus provide insights into the functional role of spe-
cific amino acid residue types and positions, where local structure is
defined as a distinct spatial organization composed of a few amino
acid residues. Studies have been reported on such structure–function
relationships among a group of structurally similar proteins: Matsuo
and Bryant (1999) presented a concept called homologous core
structures (HCS), which is defined as the subset of Cα coordinates
whose spatial locations are conserved across structure–structure
alignments with previously identified homologues. They showed that
discrimination between homologues and analogues, on the basis of
HCS overlap, is clearly superior to discrimination by local root mean
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square (RMS) superposition residual, the percentage of identical
residues, or structure–structure alignment length as a fraction of
domain length. Russell et al. (1998) presented a method to assess the
significance of binding site similarities within superimposed protein
three-dimensional structures, and applied it to all similar structures
in the Protein Data Bank (PDB). The supersites were defined as
structural locations on groups of analogous proteins (i.e. superfolds)
showing a statistically significant tendency to bind substrates, despite
little evidence of a common ancestor for the proteins considered. The
analysis of these supersites may, thus, provide a guide for predicting
function from structure.

These studies in total suggest that we can retrieve functional
information by analyzing subtle structural differences in proteins
sharing the same fold. The method we propose here focuses on
the analysis of distribution of local structure profiles in a group of
proteins with the same structural fold, where ‘local structure pro-
file’ refers to a combination of local structure and local sequence
similarity. The similarities of local structures are usually indicative
of functional conservation, and have been used in the discrimina-
tion of SCOP superfamilies (Hou et al., 2003). In addition, it has
been reported that active-site structural similarity, rather than overall
structural similarity, can better describe the functional profile (Fetrow
and Skolnick, 1998; Cammer et al., 2003), and some structure-based
functional descriptors have been used for function classification (Di
Gennaro et al., 2001; Stark and Russell, 2003; Pazos and Sternberg,
2004). In addition to local structure similarity, local sequence sim-
ilarity can also be indicative of functional importance, and it forms
the basis of motif-based methods to search for functionally import-
ant residues (Henikoff et al., 2000; Attwood et al., 2003; Hulo et al.,
2004). Since those proteins in a multi-functional fold family may
be classified into distinct functional categories, we hypothesize that
functionally important residues tend to adopt the same local struc-
ture profiles in the same category, but have diverse local structure
profiles across different categories. On the other hand, structurally
important residues may adopt local conformations that are largely
independent of function. Therefore, we can estimate the probability
of a residue being functionally important, based on its local structure
profile conservation in the same functional category, relative to con-
servation in different functional categories. Based on this hypothesis,
we have developed a method called functional signature from struc-
tural alignments (FSSA), to estimate the log odds of a residue being
functionally important, relative to its structural importance. For every
protein, the collection of log odds scores for all its residues comprises
its ‘functional signature’. The functional signature may be used to
predict function for a new query structure that is known to adopt a
certain structural fold. We evaluated the performance of the FSSA
method in function discrimination experiments and function clas-
sification experiments using datasets from the SCOP database. The
FSSA method has displayed good performance overall in these exper-
iments, and it can be used to supplement other function prediction
methods based on global sequence and structure comparison.

METHODS

Data source
The domain structures and corresponding sequences used in our analysis were
downloaded from the ASTRAL database (Chandonia et al., 2004) version
1.67. We pre-processed each of the structures and renumbered the residues
to make them consecutive. A few structures with large missing segments

(consecutive Cα atoms more than 10 Å away) were not used in our study,
since structure alignment programs cannot reliably align them. Structures,
with and without ligands bound, were treated in the same manner owing to
the small percentage of unliganded structures available, even though ligand
binding is likely to have an effect on local structure.

Construction of functional signatures
In our study, we define proteins within the same SCOP superfamily as
homologues, while those belonging to different superfamilies but possess-
ing the same fold as structural analogues. Suppose we have N domain
structures with the same structural fold, and they are classified into sev-
eral functional categories. For each structure Si(1 ≤ i ≤ N) with length
Li(1 ≤ i ≤ N) we perform a global structure alignment with every
other structure, using the MAMMOTH structure comparison program (Ortiz
et al., 2002). MAMMOTH is a fast and accurate program that performs
sequence-independent structure alignments using Cα backbone coordinates.
MAMMOTH uses the URMS Distance (Kedem et al., 1999) between two
heptapeptides to define whether or not two segments have similar local
structure and annotates them by ‘*’ in the alignment outputs. Gaps in the
alignments are treated as non-matches, and they generally only account for
a small percentage of all non-matched residues. For each amino acid residue
Rij(1 ≤ i ≤ N , 1 ≤ j ≤ Li) in the structure Si , we count the frequencies
of similarity of local structure profiles in structures in the same functional
category and in different functional categories. Similar local structure pro-
file refers to both similar local structures (as judged by the annotation in
the MAMMOTH output) and similar amino acid residue types (residue pairs
where the BLOSUM50 matrix score ≥0). We then calculate the likelihood
ratio (LR) and log-likelihood ratio (LLR) score for Rij , as represented by the
logarithms of the ratio of the two frequencies:

LRijm = countshm/countsh

countsam/countsa
,

LRijn = (countsh − countshm)/countsh

(countsa − countsam)/countsa
,

LLRijm = log (LRijm),

LLRijn = log (LRijn),

where LLRijm and LLRijn represent the log-likelihood ratio of finding
matched local structure profiles and not finding matched local structure pro-
files in homologous proteins for residue Rij in structure Si , respectively.
countsh and countsa represent the number of homologous and structurally
analogous proteins, respectively. countshm and countsam represent the num-
ber of homologous proteins with matching local structure profiles and the
number of structurally analogous proteins with matching local structure pro-
files, respectively. Pseudocounts are used when countshm or countsam are
equal to zero. The collection of LLRijm for all residues in a structure Si

represents the functional signature for this structure.

Calculation of posterior odds for a query structure
All structures with a known functional signature are used as reference
structures to classify a query structure, with the same fold, into a partic-
ular functional category. After performing structure alignment between a
reference structure Si(1 ≤ i ≤ N) and the query structure, the collection of
residues with matching local structure in Si is LM and LM ⊆ (1, 2, . . . , Li).
According to Bayes’ rule, the log posterior odds that the query structure
belongs to the same functional category as the reference structure Si , can be
expressed as:

log (odds(posterior)) = log (odds(prior)) +
∑

j∈LM

LLRijm +
∑

j /∈LM

LLRijn.

For a query with an unknown function, the log prior odds can be treated
as a constant for a given functional category. Usually the use of Bayes’
rule requires data independence assumption, which means that the likeli-
hood ratios for different residues are independent. Given the fact that usually
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only a few residues are functionally important and well conserved in a given
structure, this assumption is relaxed here. When we have the posterior log
odds score for every reference structure, we assign the function of the query
structure into the functional category that has the highest average log odds
scores.

Function discrimination experiments
The purpose of these experiments was to test whether an algorithm can confid-
ently discriminate homologues from structural analogues. We evaluated the
performance by the receiver operator characteristic (ROC) area under curve
scores. ROC is a widely used means to evaluate the discrimination ability of
binary classification methods, when the test results are continuous measures.
ROC curves display the relationship between sensitivity (true positive rate)
and 1−specificity (false positive rate) across all possible threshold values that
define the positivity of a condition (in our case, whether a domain structure
belongs to a particular SCOP superfamily). The area under the ROC curve
ranges from 0 to 1 with a higher score indicating better discriminatory power.
Protein domains within each family were used as positive testing samples,
and domains outside the family but within the same superfamily, were used
as positive training samples. Negative samples were all domains outside the
superfamily but within the same structural fold family, and were randomly
split into training and testing sets in the same ratio as the positive samples.
This yielded 37 SCOP families containing at least 5 family members (positive
testing set), at least 5 superfamily members outside of the family (positive
training set) and at least 10 members outside the superfamily, but within the
same fold (negative training and testing sets). The ROC scores were calcu-
lated for the positive and negative testing samples for different discrimination
methods as described below.

We compared the performance of several function discrimination methods.
For the Smith–Waterman sequence alignment method, we used the programs
search in the FASTA program suite version 3.4 (Pearson and Lipman, 1988).
We searched a given query sequence against every sequence in a training
set, using default parameters, and kept the lowest E-value found for this
sequence. For a group of query sequences containing both positive and neg-
ative samples, we calculated the ROC score based on their E-values. For the
PSI-BLAST method, we used the program blastpgp in the NCBI-BLAST
program suite version 2.2.6 (Altschul et al., 1997). We searched a given
query sequence against all sequences in a training set, using three iterations
and all other default parameters; we then used the lowest E-value for this
sequence for the calculation of ROC score. For the hidden Markov model
(HMM) method, we used the program HMMER version 2.3.1 (Eddy, 1998).
Although pre-generated HMMs are available from the Pfam database, these
models contain information on our testing set; we, therefore, constructed a
multiple sequence alignment using CLUSTAL W version 1.83 (Thompson
et al., 1994) for each superfamily, and then built a HMM using the resulting
multiple alignment. For a given query sequence, we aligned it with the HMM
and used the E-value for the calculation of ROC score. All the E-values were
used here to measure relative similarity without stringent statistical meaning,
since all the database sequences were similar to the query and they viol-
ated the ‘sequence unrelatedness’ assumption to calculate accurate E-values.
For the global and local structure comparison methods, we used the pro-
grams MAMMOTH (Ortiz et al., 2002) and CE (Shindyalov and Bourne,
1998), respectively. We searched every query structure against a training set,
and used the highest Z-score for the calculation of the ROC score. For the
FSSA method, we trained a model using a training set, calculated the log
odds score for every query sequence and used the calculated score for ROC
evaluation.

Function classification experiments
Our goal here was to test how well a method can assign a query sequence
with a known structural fold into a functional category, as defined by SCOP
superfamily. We used those SCOP folds that were represented in the function
discrimination experiments above. To investigate how performance changes
with respect to homology among testing and training sequences, we used

four different datasets retrieved from the ASTRAL database, representing
proteins whose pairwise sequence identities were <=10, 20, 30 and 95%,
respectively. For each fold in each dataset, those superfamilies with less
than eight sequences were combined into a single ‘OTHER’ category, and
those folds containing only one superfamily (excluding the ‘OTHER’ cat-
egory) were not used. For each fold in each dataset, we then divided the
corresponding sequences into four parts of similar sizes, ensuring that each
functional category has approximately the same frequency in each part. In
each of the four-fold cross-validation experiments, 75% of the sequences
were used as a database and 25% of the sequences were used for queries.
For the Smith–Waterman and PSI-BLAST methods, we searched each query
sequence against the database and assigned the query into the same functional
category with the database sequence having the lowest E-value. For the HMM
method, we built and calibrated a model using the Clustal W and hmmbuild
programs for each functional category using sequences in the database, and
then used the hmmpfam program to assign each query into the functional
category based on the lowest E-value. For structure comparisons, we used
either the MAMMOTH or the CE program to search each query against the
database structures, and assigned the query into the same functional category
as the database structure with the highest Z-score. For the FSSA method, we
assigned the query into the functional category that had the highest average
posterior log odds score.

RESULTS

Construction of functional signatures
We constructed functional signatures for protein domains in the
ASTRAL database (Chandonia et al., 2004) whose pairwise
sequence identities are ≤30%, using the FSSA method. Figure 1
shows examples of functional signatures for proteins in the metallo-
dependent hydrolase (SCOP superfamily identifier: c.1.9) and
aldolase (SCOP superfamily identifier: c.1.10) superfamilies. Both
superfamilies belong to the TIM barrel structural fold and con-
tain similar numbers of proteins. The functional signature consists
of a score for each residue in the protein domain, indicating the
log odds of finding similar local structure profile in homologues
from structural analogues. These signatures are somewhat similar
to the idea of Homologous Core Structures (HCS) (Matsuo and
Bryant, 1999), in that higher scores correspond to functionally more
important residues. However, the construction of HCS uses whole-
structure segments that can be aligned, while the construction of
FSSA uses only individual residues with similar local structure pro-
files. In addition, the construction of HCS uses only structure
information, while the construction of FSSA uses both structure
and sequence information. Furthermore, HCS uses pairwise align-
ments between homologous proteins, whereas FSSA uses pairwise
alignments between both homologous and structural analogues, thus
enhancing signal for functionally important residues.

Figure 1 indicates that most domains in the metallo-dependent
hydrolase superfamily have similar functional signatures, with the
C-terminal portion of the protein having relatively higher log odds
scores compared with the rest of the protein. A visual examination
of the domain structures reveals that this region corresponds to an
additional α-helix in the C-terminal end of the barrel. The helix
functions as a ‘cap’ to the barrel, and is one of the criteria used
to classify this SCOP superfamily. In comparison, the distributions
of log odds scores for protein domains in the aldolase superfam-
ily are more heterogeneous. For some protein domains (e.g. SCOP
identifiers d1o5ka_ and d1f74a_), the highest log odds scores tend
to accumulate around the C-terminal end of the sequence. But for
other protein domains (e.g. SCOP identifiers d1pe1a_ and d1of8a_),
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Fig. 1. Comparison of the functional signatures of protein domains within the metallo-dependent hydrolases (SCOP superfamily identifier: c.1.9) and the
aldolase (SCOP superfamily identifier: c.1.10) superfamilies. The functional signature for each protein domain is represented by plotting the log odds score
versus residue number. For each signature the five residues with the highest log odds scores are highlighted by red dot symbols. In general, domains in the
hydrolase superfamily have similar signatures whereas domains in the aldolase superfamily have heterogeneous signatures.

the distribution of the highest log odds scores are scattered all over
the sequence. The similarity of functional signatures for protein
domains in a particular superfamily may thus dictate whether the
FSSA method works well for that superfamily in function prediction
applications.

Function discrimination experiments
The value of a function prediction method depends on whether it can
successfully discriminate between homologues and structural ana-
logues. We define proteins within the same SCOP superfamily as
homologues, and proteins within the same SCOP fold but different
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Fig. 2. Relative performance of six function discrimination methods on 37 datasets from the SCOP database that has been filtered by 30% pairwise sequence
identity. For each function discrimination method, the number of SCOP families is plotted against the minimum ROC score achieved by that method. The
FSSA method has the best performance in discriminating homologues from structural analogues.

superfamilies as structural analogues. We compared the performance
of the FSSA method in distinguishing homologues and structural ana-
logues to several other function discrimination methods, including
Smith–Waterman, PSI-BLAST, HMMs and two structure compar-
ison methods, MAMMOTH and CE (see Methods section). Of the
two structure comparison programs we used, MAMMOTH performs
global structure alignments, while CE performs local structure align-
ments. We used 37 SCOP families in our experiments, with the
data preparation techniques aimed at minimizing sequence identity
between training and testing sets (see Methods section). We meas-
ured the performance of each method by the ROC area under the
curve score for these families, and compared the distribution of
these ROC scores for different methods (Fig. 2 and Supplement-
ary Table 1). Overall, the FSSA method has the best performance,
with the highest ROC score for 24/37 families. In addition, the FSSA
method also has the highest average ROC scores (0.86), among the
six function discrimination methods. Since the calculation of ROC
score for each family involves different number of sequences, the
average score is not a valid means to compare function discrim-
ination methods, though it provides some insight into the general
performance of different methods. Also, some folds (such as the
immunoglobulin and the TIM barrel folds) are enriched in these
datasets, so they may not be representative of protein fold space in
general.

Function classification experiments
Although the FSSA method performs well in terms of function
discrimination, such a test is not adequate to demonstrate its value
in function prediction applications. First, the FSSA method uses a
‘negative training set’, that contains sequences that share the same

structural fold but belong to different superfamilies relative to the
sequences that we are considering. Since other methods cannot
incorporate information from negative samples, the better perform-
ance evaluated by ROC may be due only to the inclusion of this
additional information. Further, although these function discrimina-
tion tests are commonly used to evaluate function prediction methods
(Ben-Hur and Brutlag, 2003; Hou et al., 2003, 2005; Liao and Noble,
2003; Saigo et al., 2004), they have little practical use. Many function
discrimination methods, such as those employing logistic regression
or support vector machine techniques, are binary classifiers in nature,
and are very difficult, if not impossible, to use for multi-category
classification problems. In reality, when we can confidently assign
a given sequence to a structural fold, we want to clearly identify the
functional category that this sequence belongs to, as opposed to a
binary answer of whether or not it belongs to a particular functional
category. Therefore, a more rigorous and useful test for the per-
formance of function prediction methods would be to see if proteins
could be accurately assigned into functional categories, such as those
defined by SCOP superfamilies. Figure 3 shows an example, where
all five proteins have the same TIM barrel structural fold, but their
catalytic sites and catalytic residues are quite different from each
other [PDB identifiers 2dor (Rowland et al., 1998), 1qpr (Sharma
et al., 1998), 1a4m (Wang and Quiocho, 1998), 1jcl (Heine et al.,
2001) and 1n55 (Kursula and Wierenga, 2003), respectively]. These
five proteins belong to different SCOP superfamilies and different
EC primary classes. This example suggests that local structural dif-
ferences, instead of overall structural folds, determine the function
uniquely among proteins in multi-functional fold families. Given a
collection of query structures, such as those determined by structural
genomics projects, the goal of function classification experiments is
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Fig. 3. Catalytic residues inside the barrel structure for five TIM barrel proteins (PDB identifier: 2dor, 1qpr, 1a4m, 1jcl and 1n55, respectively). The side
chains for catalytic residues are shown by stick and ball representations and colored as red (acidic residue), blue (basic residue) and green (polor residue). The
substrates or substrate analogs are shown by stick representations and are colored by elements. The structure of protein domain d2dora_ is also shown as an
example of the overall TIM barrel structural fold. The pairwise Cα RMSDs between these folds range from 2.4 to 4.2 Å, with an average of 3.4 Å. These five
proteins have quite different organizations of catalytic residues and biochemical activities, despite the similarity of their overall structural folds.

to identify the particular functional categories (SCOP superfamilies)
these query structures belong to.

We performed function classification experiments on several
SCOP folds derived from the function discrimination experiments
(see Methods section). To investigate the correlation between per-
formance and homology among testing and training sequences, we
used four different datasets retrieved from the ASTRAL database,
representing proteins whose pairwise sequence identities are <=10,
20, 30 and 95%, respectively. For all sequence identity levels, these
structural folds in our datasets contain all-alpha, all-beta, alpha/beta,
alpha+beta and small proteins, and are good representatives of the
fold space. We used four-fold cross-validation experiments to test
the function classification accuracy for the six methods: Smith–
Waterman, PSI-BLAST, HMM, MAMMOTH, CE and FSSA (Fig. 4
and Supplementary Table 2). Overall, the FSSA method has the best
function classification performance, when pairwise sequence iden-
tity in the datasets is≤30%, though the differences are subtle between
all methods utilizing structural information. Sequence-homology
based function classification methods perform relatively poorly at
low sequence identity levels. The poor performance of the HMM
method is not unexpected, since the multiple alignment quality is
low when sequence identity is low. We expect that HMMs construc-
ted from manual alignments will have better performance. Despite

the overall best performance of the FSSA method, we also notice that
it does not work well for some folds, such as the OB-fold (SCOP
identifier: b.40) and the adenine nucleotide alpha hydrolase-like fold
(SCOP identifier: c.26), due to a heterogeneity in the functional sig-
natures (see below). Our results, therefore, highlight the importance
of using multiple methods to provide evidence for function. Because
the performance of the FSSA method is relatively consistent for par-
ticular folds at different sequence identity levels (Supplementary
Table 2), we may use the above results as a priori information to
judge when to use FSSA to complement homology-based function
prediction methods for new query sequences.

We further examined the prediction accuracies of the FSSA method
on the TIM barrel structural fold family (SCOP fold identifier: c.1),
which is one of the largest structural fold families. For the datasets
with pairwise sequence identity ≤30%, the FSSA method correctly
predicts the function for 11/14 (79%) proteins for the hydrolase
superfamily, but only 1/15 (7%) for the aldolase superfamily. As
we have shown in Figure 1, the members in the hydrolase superfam-
ily have similar functional signatures, whereas the signatures in the
aldolase superfamily are more heterogeneous. Therefore, the sim-
ilarity of signatures within a superfamily may dictate if the FSSA
will work well for that superfamily. This suggests that functional
signatures from heterogeneous superfamilies should be interpreted
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Fig. 4. Relative performance of six function classification methods on datasets from the SCOP database that has been filtered by 10, 20, 30 and 95% pairwise
sequence identity, respectively. For each function classification method, the number of SCOP folds is plotted against the minimum prediction accuracy achieved
by that method. The FSSA method has the overall best performance in function classification when sequence identity is ≤30%.

with more caution, since they may contain considerable amounts of
noise.

Effects of excluding sequence information from
the FSSA method
The FSSA method uses information on both local structure simil-
arity (from the MAMMOTH program output) and local sequence
similarity (from the BLOSUM50 substitution matrix). To deconvo-
lute these contributions, we performed additional experiments on the
FSSA method, using only local structure information. The functional
signatures generated by the two forms of FSSA were generally quite
similar to each other. Likewise, for the function discrimination and
function classification experiments, the performance of the two forms
of FSSA correlated very well with each other (see Supplementary
Table 1 and Supplementary Table 2). When comparing the structure-
only FSSA method to the other five homology-based methods, we
found that it still has the best performance, with the highest ROC
scores for 22/37 families, as well as the highest average prediction
accuracies when sequence identity is ≤30%. However, the FSSA
method, using both structure and sequence information, has slightly
better performance than the structure-only FSSA, achieving higher
or equal ROC values for 30/37 families in the function discrimination
experiments and higher average prediction accuracies at all sequence

identity levels in the function classification experiments. This sug-
gests that both structure and sequence information contribute to the
better performance of the FSSA method, and further improvements
can be made by more sophisticated utilization of the sequence and
structure information.

In summary, the FSSA is a novel method that explicitly estimates
the relative contribution to function and structure for every residue
in a protein sequence. The generated log odds scores may be used
to interpret functional importance of individual residue types and
positions, as well as to classify protein structures into functional
categories. Together with other homology-based function prediction
methods, the FSSA method will be valuable in function annotation
applications for structural genomics projects.

DISCUSSION
Structural genomics projects are producing large amounts of new
structures, prior to any functional knowledge of the target pro-
teins (Goldsmith-Fischman and Honig, 2003). In addition, genome
sequencing projects are producing a wealth of sequence data, many of
which are homologous to a protein with known structure. However,
determining the biological and physiological functions of a protein,
even with a known structure, is still an open problem. Usually,
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genome annotators may assign the function of a protein to be the
same as the protein with the most similar sequence or structure.
However, global sequence- or structure-based function classification
methods usually do not have enough accuracy for experimental val-
idation of the predictions. Therefore, novel prediction methods, such
as the FSSA method presented here, are necessary to be developed to
give accurate function prediction when the sequence identity levels
between the query and the database are relatively low.

Our results presented in this paper indicate that at least for pro-
teins in multi-functional fold families, the contribution of amino acid
residue types and positions to structure and function are largely sep-
arable. Thus, we can construct functional signatures for proteins with
known structures, and use the signatures to interpret the structural and
functional importance of individual amino acid residues. Once these
particular residues are identified, site-directed mutagenesis exper-
iments can be performed for further functional characterization of
these proteins. In addition, the FSSA method may be used in pro-
tein design applications to help modify existing functions or produce
novel ones.

Fold similarities often require additional investigation of key
residues before functions can be confidently inferred, and many
algorithms have been developed to achieve this goal (see references
in the Introduction section). For structural genomics targets with
unknown function, comparing functional sites, instead of the overall
structural fold, can reveal more clues about the biological activity
of a protein (Stark et al., 2004). Compared with other functional
site identification algorithms, our approach has some marked dif-
ferences: the functional signature is a collection of log odds scores
that are continuously distributed along the whole sequence, rather
than a small collection of catalytic residues. Also, instead of trying
to capture a common pattern from a group of homologous proteins,
the FSSA method maintains a separate signature for each individual
protein, thus allowing more sensitive functional analysis. Because of
these differences, functional signatures should not be interpreted to
be catalytic sites. When we examine the catalytic sites in Figure 3,
none of them are positions with the highest log odds scores. For
example, as shown in Figure 1, the highest log odds score of the
1a4m protein is accumulated in the C-terminal region, which does
not contain the catalytic sites. However, the local structures in the
C-terminal region capture the characteristics of the hydrolase super-
family, and can be used to classify function accurately, which is
what the FSSA method demonstrates. We envision that other meth-
ods, aimed at finding discrete structural motifs or distributions of
catalytic sites, can be used to validate whether the functional sites
identified by the FSSA method are biologically relevant, and the
combination may result in enhanced and comprehensive functional
information for newly determined structures.

The FSSA method uses pairwise structure alignments. Multiple
sequence alignment based methods have been developed extensively
for constructing profiles for function prediction (Krogh et al., 1994;
Bateman et al., 1999) and it has been shown that structural inform-
ation can improve the quality of sequence alignments and can be
used to generate better profiles (Al-Lazikani et al., 2001). However,
these methods aim at identifying remote homologues, or discrimin-
ating functionally related proteins from unrelated ones. They may
not work well at discriminating homologues from structural ana-
logues, or at classifying homologues into functional subfamilies. To
solve these problems, multiple sequence alignment based methods
must be adapted to identify key residues for determining functional

specificity (Hannenhalli and Russell, 2000), but such algorithms
require relatively high-sequence identity to generate accurate mul-
tiple sequence alignments. Using structure information may generate
better alignments, but having automated and accurate multiple struc-
ture alignments for a large number of proteins across different
superfamilies is a difficult problem. Reliable multiple structure align-
ments (generated manually, for example) however, may improve the
accuracy of the FSSA method for specific fold families.

The FSSA method uses the MAMMOTH program output as
well as the BLOSUM50 matrix to obtain a binary definition of
whether or not two residues have a similar local structure profile.
To investigate the relative contribution of structure and sequence
information on the quality of the signatures, we also tested a modi-
fied FSSA method using only structure information. Generally, the
FSSA using both structure and sequence information performed
better than the one using only structure information, showing that
incorporating additional sequence information does improve per-
formance. A more sophisticated definition of local structure profile
similarity may further improve the performance of the FSSA method.
However, this is a difficult problem, since, unlike sequence align-
ments, structural alignments may contain slight alignment shifts
between adjacent residues. In such cases, different amino acid types
can be aligned with each other, resulting in incorrect functional
signatures.

Given the fact that the contents of sequence databases are signi-
ficantly greater than those of structure databases, it would be more
desirable if we can directly use sequence information for function
classification. We envision that this problem may be solved by using
sophisticated sequence-to-structure alignments or using high-quality
de novo structure predictions (Bradley et al., 2003; Skolnick et al.,
2003; Hung et al., 2005). The latter can be used for functional annota-
tion, based on structure comparison as well as FSSA. Extension of
the FSSA method such that sequence only information is used will
have a greater impact on genome annotation, function prediction and
protein design applications.
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