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Abstract

Background: A key component in protein structure prediction is a scoring or discriminatory
function that can distinguish near-native conformations from misfolded ones. Various types of
scoring functions have been developed to accomplish this goal, but their performance is not
adequate to solve the structure selection problem. In addition, there is poor correlation between
the scores and the accuracy of the generated conformations.

Results: We present a simple and nonparametric formula to estimate the accuracy of predicted
conformations (or decoys). This scoring function, called the density score function, evaluates decoy
conformations by performing an all-against-all C, RMSD (Root Mean Square Deviation) calculation
in a given decoy set. We tested the density score function on 83 decoy sets grouped by their
generation methods (4state_reduced, fisa, fisa_casp3, Imds, lattice_ssfit, semfold and Rosetta). The
density scores have correlations as high as 0.9 with the C, RMSDs of the decoy conformations,
measured relative to the experimental conformation for each decoy.

We previously developed a residue-specific all-atom probability discriminatory function (RAPDF),
which compiles statistics from a database of experimentally determined conformations, to aid in
structure selection. Here, we present a decoy-dependent discriminatory function called self-
RAPDF, where we compiled the atom-atom contact probabilities from all the conformations in a
decoy set instead of using an ensemble of native conformations, with a weighting scheme based on
the density scores. The self-RAPDF has a higher correlation with C, RMSD than RAPDF for 76/83
decoy sets, and selects better near-native conformations for 62/83 decoy sets. Self-RAPDF may be
useful not only for selecting near-native conformations from decoy sets, but also for fold
simulations and protein structure refinement.

Conclusions: Both the density score and the self-RAPDF functions are decoy-dependent scoring
functions for improved protein structure selection. Their success indicates that information from
the ensemble of decoy conformations can be used to derive statistical probabilities and facilitate
the identification of near-native structures.
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Background

A scoring or discriminatory function that can reliably dis-
tinguish near-native conformations from misfolded ones
is a necessity to solve the structure prediction problem.
Various types of scoring functions have been developed to
accomplish this goal, and can be grouped into two catego-
ries: physics-based functions that take into account elec-
trostatic, Van der Waals, hydrogen bonding, solvation and
covalent interactions [1-4], and knowledge-based func-
tions that compile statistics on the preferences of amino
acid residues/atoms (such as pairwise distances or solvent
accessibility) from experimentally solved structures [5-
10]. In particular, knowledge-based scoring functions,
especially detailed all-atom ones, have been applied in all
areas of structure prediction: comparative or homology
modeling, fold recognition or threading, and de novo pre-
diction.

The knowledge-based scoring functions have been very
successful in discriminating the native conformation from
misfolded ones [10-13]. However, even the best confor-
mations generated by the structure prediction protocols,
particularly de novo ones, are usually still quite distant
from the native conformation [14-18]. Therefore, it is
more important to assess how well a given scoring func-
tion can distinguish the best predicted conformations in a
given decoy set generated by structure prediction meth-
ods. In this regard, none of these functions can consist-
ently select the most near-native conformations from
non-native ones, and there is poor correlation between
the scores and measures of similarity between the pre-
dicted conformations (or "decoys") and the native confor-
mation, such as the C, root mean square deviation
(RMSD) of the decoys relative to the native conformation.

There are problems with the theoretical justification of
both the physics-based [19] and knowledge-based [20-23]
approaches, which in part explains the ineffectiveness of
these scoring functions [19-23]. Specifically in the case of
knowledge-based scoring functions, which are "trained"
using experimentally determined structures, the intrinsic
structural properties of native conformations may be cap-
tured, but these functions may not contain the informa-
tion necessary to evaluate the quality of near-native and
misfolded conformations. However, borrowing informa-
tion from all the conformations in a decoy set may be
helpful to evaluate the proximity of any given near-native
or misfolded conformation to the corresponding native
structure. This is supported by recent findings that predic-
tion of native contacts was improved when using the fre-
quency of occurrence of contacts in decoy conformations
from a decoy set [24,25].

A new variety of scoring functions that attempt to use all
the information in the ensemble of conformations gener-
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ated by a structure prediction protocol have been used as
a final filtering step in de novo structure prediction. This
strategy for predicting protein structure is based on the
assumption that there are a greater number of low-energy
conformations surrounding the correct fold than there are
surrounding incorrect folds in a decoy set. These functions
compute a score for a given conformation based on its dis-
tance in Cartesian space relative to its neighbors. Initially
used successfully at CASP3, one approach was imple-
mented simply by adding the number of neighbors within
a particular C, RMSD cutoff to a given conformation
[26,27]. In these cases, the conformation with the greatest
number of neighbors was closer to the experimentally
determined conformation than were the majority of con-
formations in the ensemble. The method was refined fur-
ther at CASP4 to simultaneously cluster decoy
conformations and pick the centers of these largest clus-
ters [28].

Here we describe a similar and simple formula, called the
density score function, to pick the near-native conforma-
tions from a large ensemble of conformations in a decoy
set. The logic underlying such a nonparametric function is
that a significant fraction of conformations in the decoy
set resemble the native conformation from different direc-
tions in the space. These decoy conformations form a sin-
gle cluster, and the density of the cluster gradually
increases from the periphery to the center of the cluster.
When near-native conformations are sampled adequately,
the center of the cluster is where the most near-native con-
formations should reside. Therefore, by calculating the
density around a given conformation, we can estimate the
similarity between this conformation and the correspond-
ing native one. To calculate the densities, we first perform
an all-against-all C, RMSD calculation, and the density
score for each conformation is then calculated as the sum
of RMSDs between it and all other decoy conformations.

Publicly available decoy sets provide a means to evaluate
performance of scoring functions, and permit compari-
sons between different structure discrimination methods
[29,30]. Many of these decoy sets contain a large number
(>100) of decoy conformations, with varying degrees of
similarity to the native conformation. The goal of any
scoring function is to pick the conformations that are
most similar to the native one. We tested the density score
function on 83 decoy sets grouped by their generation
methods (4state_reduced, fisa, fisa_casp3, Imds,
lattice_ssfit, semfold and Rosetta). Since these sets contain
conformations generated by different conformational
search algorithms, the performance of a scoring function
depends on each set, and success in one set does not guar-
antee success in another [31]. Therefore, the goal of test-
ing on a wide variety and large number of decoy sets is to
provide a rigorous evaluation of how well a scoring
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function works. In general, the density scores have rela-
tively high correlation with the C, RMSD relative to the
experimentally determined structure in the decoy sets we
evaluated. However, because the calculation of the density
score function depends on an existing decoy set, this scor-
ing function cannot be easily used in a fold simulation.

The success of the density score function led us to believe
that using information in the decoy set itself can be help-
ful in selecting the best conformations using knowledge-
based scoring functions. These functions usually compile
statistics on the preferences of amino acid residue or
atomic contacts in a large ensemble of experimentally
determined structures [5-10]. In previous efforts we
derived a residue-specific all-atom probability discrimina-
tory function (RAPDF) to compute the probability of a
conformation being native-like, given a set of pairwise
atom-atom distances [7]. Here, we hypothesize that such
a knowledge-based function may be used to derive statis-
tics from all the decoy conformations in a large decoy set.
We can use all the included decoy conformations to derive
the parameters for the all-atom function and then use the
parameters to select the most near-native conformations
in the same set.

For a given decoy set, the C, RMSDs relative to the exper-
imentally determined structures usually follow a Gaus-
sian-like distribution, which means that only a small
fraction of conformations have relatively low C, RMSD.
When compiling the atom-atom contact probabilities
from such a set, an appropriate weighting method is nec-
essary to inflate the contribution of the low-RMSD confor-
mations to the statistics. Given the strong correlation
between C, RMSDs and the density scores, the latter can
be used as a parameter in the weighting scheme.

We therefore derived a statistical probability function,
called self-RAPDF, from the decoy conformations using
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an exponential weighting scheme based on the density
scores. We tested the performance of self-RAPDF on 83
publicly available decoy sets. In almost all cases, this
method produced a higher correlation with C, RMSD
than the RAPDF, whose parameters were derived from a
large ensemble of experimentally determined structures. It
also performed better than RAPDF at selecting near-native
conformations for most of the decoy sets. Unlike the den-
sity score function, self-RAPDF can also be used in a fold
simulation and for structure refinement.

Results

Performance of the density score function

The performance of the density score function on the
4state_reduced decoy sets, as evaluated by correlation
coefficients between scores and C, RMSDs of decoys rela-
tive to experimentally determined conformations, is sum-
marized in Table 1. For comparison purposes, we also list
the results generated by the self-RAPDF and other pub-
lished scoring functions on the same set, including the
empirical free energy function with an atomic solvation
model [32], the atomic knowledge-based potential [8],
and the Shell function [33]. For all the 4state_reduced
decoy sets, the density scores and self-RAPDF produce a
significantly higher correlation between scores and C,
RMSDs than the other functions. The 4state_reduced sets
contain decoys for seven small proteins, and were gener-
ated by exhaustively enumerating the backbone rotamer
states of 10 selected residues in each protein, using an off-
lattice model with four discrete dihedral angle states per
residue [12]. Compact structures were further filtered to
produce these sets, and various scoring functions have a
satisfactory performance on it. We used the
4state_reduced sets since they allowed us to compare our
function to others that have used the same sets. However,
it is also important to examine the performance on other
decoy sets since the performance of scoring functions may
be highly set dependent.

Table I: Correlation coefficients between C, RMSDs of decoys relative to the experimentally determined conformations and scores
generated by the density score function, the self-RAPDF and other published scoring functions applied to the 4state_reduced decoy sets.

Protein Number of Empirical Atomic KBP [8]  Shell [33] RAPDF [7] Density score Self-RAPDF
(PDB code) conformations  function [32]

lctf 630 0.68 0.6 0.65 0.73 0.98 0.89

Iré69 675 0.66 0.5 0.52 0.70 0.96 0.88

Isn3 660 0.53 0.5 0.42 0.47 0.96 0.89

2cro 674 0.58 0.7 0.58 0.76 0.96 0.92

3icb 653 0.77 0.8 0.74 0.85 0.98 0.92

4pti 687 0.46 0.5 0.34 0.49 0.95 0.89

4rxn 677 0.6l 0.6 0.57 0.57 0.98 0.88

The density scores and the self-RAPDF scores have the best correlation coefficient with C, RMSDs of decoys relative to experimentally

determined conformations for all seven sets.
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Table 2: Performance of the density score function on 83 decoy sets grouped by their generation methods.

Protein (PDB code) N RMSD range (A) Rz, log Pg, logPg, FE(%) C.C. R.C. R, C.Coig
4state_reduced

lctf 630 1.32-9.07 7 -1.95 -2.8 88.9 0.98 0.99 | 0.95
1r69 675 0.88 —8.31 7 -1.98 -2.83 87.4 0.96 0.98 | 0.88
Isn3 660 1.31 -9.13 Il -1.78 -2.82 86.4 0.96 0.97 | 0.95
2cro 674 0.81 —8.31 | -2.82 -2.83 84.6 0.96 0.98 | 0.82
3icb 653 0.95-9.39 2 -2.51 -2.81 84.2 0.98 0.99 4 0.95
4pti 687 1.41 —9.27 I -1.8 -2.84 91.7 0.95 0.96 3 091
4rxn 677 1.36 - 8.14 3 -2.35 -2.83 84.2 0.98 0.98 | 0.95
Average 665 1.15-8.80 217 -2.82 86.8 0.97 0.98 0.92
fisa

1fc2 500 3.11 -10.58 115 -0.64 -0.98 6 0.95 0.67 399 0.91
lhdd-C 500 277 -12.92 18 -1.44 -1.62 28 0.95 0.88 248 0.93
2cro 500 4.29 — 12.60 109 -0.66 -1.7 26 0.74 0.75 98 0.62
4icb 500 4.75-14.13 8l -0.79 -1.68 24 0.69 0.69 138 0.60
Average 500 3.73-12.56 -0.89 -1.5 21 0.83 0.75 0.77
fisa_casp3

1bg8-A 1,200 6.03 — 15.80 177 -0.83 -1.16 13.3 0.39 0.39 721 0.2
1bl0 971 3.63-18.17 44 -1.34 -2.03 57.7 0.74 0.73 129 0.7
leh2 2,413 4.00 - 15.29 196 -1.09 -2.68 52.6 0.8 0.81 300 0.75
ljwe 1,407 7.79 —20.87 345 -0.61 -0.72 4.2 -0.24 -0.23 1298 -0.23
130 1,400 6.47 —24.62 474 -0.47 -0.91 0 0.28 0.25 N/A 0.21
smd3 1,200 8.54-17.00 74 -1.21 -1.21 17.5 0.65 0.6 993 0.45
Average 1,432 6.08 — 18.63 -0.93 -1.45 24.2 0.43 0.42 0.35
lattice_ssfit

Ibeo 2,000 7.00 - 15.61 6 -2.52 -2.52 30.5 0.46 0.45 1069 0.07
lctf 2,000 5.45 - 1281 174 -1.06 -1.74 40 0.71 0.72 882 0.55
| dkt-A 2,000 6.69 — 14.05 74 -1.43 -2 34 0.42 0.4 1987 0.18
Ifca 2,000 5.14-11.39 224 -0.95 -1.81 43 0.55 0.54 1287 0.35
Inkl 2,000 527 - 13.64 264 -0.88 2219 20 0.54 0.56 1103 0.33
I pgb 2,000 581 —1291 796 -0.4 -1.04 10 0.39 0.35 1840 0.27
Itrl-A 2,000 5.38-12.52 480 -0.62 -1.63 14.5 0.41 0.39 1458 0.3
4icb 2,000 474 - 12.92 16 -2.1 -23 41 0.69 0.69 318 0.61
Average 2,000 5.68-13.23 -1.24 -1.9 29.1 0.52 0.51 0.33
Imds

1b0On-B 497 2.45 - 6.03 70 -0.85 -0.85 2 0.14 0.16 468 0.15
Ibba 500 2.78 -89I 162 -0.49 -0.72 0 0.39 0.24 300 0.5
lctf 497 3.59 -12.53 185 -0.43 -0.58 0 0.41 0.49 367 0.1
ldtk 215 432 - 1258 90 -0.38 -0.93 14 0.63 0.55 121 0.53
1fc2 500 3.99 -8.45 245 -0.31 -0.7 4 0.46 0.22 488 0.25
ligd 500 3.11 —12.55 135 -0.57 -1.7 38 0.81 0.79 113 0.84
Ishf-A 437 4.39-12.35 19 -1.36 -1.36 13.7 0.15 0.16 211 0.18
2cro 500 3.87-13.48 208 -0.38 -0.8 0 0.36 0.36 362 0.16
2ovo 347 4.38-13.38 15 -1.36 -1.5 23.1 0.56 0.59 162 0.45
4pti 343 4.94-13.18 119 -0.46 -1.28 14.6 0.67 0.52 250 0.63
unk 500 6.68 — 13.94 190 -0.42 -0.46 0 0.25 0.07 N/A 0.07
Average 440 4.05-11.58 -0.64 -0.99 9.9 0.44 0.38 0.35
semfold
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Table 2: Performance of the density score function on 83 decoy sets grouped by their generation methods. (Continued)

lctf 11,400 4.44-12.98 1,936 -0.77 -0.87 9.7 0.13 0.17 10252  0.05
1e68 11,360 298 —12.53 6,388  -0.25 -0.27 14.5 0.19 0.13 2951 0.31
leh2 11,440 532-15.07 1,068 -1.03 -1.41 21.9 0.24 0.21 3998 0.22
Ikhm 21,080 3.84 - 14.77 8,992 -0.37 -0.67 59 0.1 0.1 13444  0.07
Inkl 11,660 3.84—14.22 2,862 -0.61 -0.73 14.4 0.32 0.32 3992 0.32
I pgb 11,280 4.67 — 13.01 3,650 -0.49 -0.59 74 0.09 0.11 11274  0.06
Average 13,037 4.18-13.76 -0.59 -0.76 12.3 0.18 0.17 0.17
Rosetta

1a32 1,610 0.92 - 16.89 352 -0.66 -1.02 19.3 0.89 0.93 290 0.87
laa3 1,865 3.02-12.77 390 -0.68 -0.77 3.8 0.57 0.6 I 0.66
lafi 1,824 224 -15.14 26 -1.85 -2.22 42.8 0.92 0.94 201 0.95
lail 1,807 1.97 — 14.69 95 -1.28 -1.77 59.8 0.92 0.93 49 091
lam3 1,898 1.36 — 11.63 245 -0.89 -1.92 39 0.69 0.75 | 0.81
Ibq9 1,825 2.59-15.73 303 -0.78 -1.88 30.1 0.41 0.47 | 0.68
Ibwé 1,900 1.89 - 12.30 Il -2.22 -2.5 27.9 0.75 0.74 | 0.84
lcch 1,892 6.41 —26.78 280 -0.83 -1.06 30.7 0.46 0.46 1891 0.36
I cei 1,897 4.57 - 16.34 185 -1.01 -2.8 51.1 0.82 0.84 255 0.75
lcsp 1,809 389-17.92 361 -0.7 -1.03 7.7 0.49 0.47 | 0.58
lctf 1,922 5.07 — 15.81 305 -0.8 -2.44 31.2 0.75 0.7 | 0.67
Idol 1,871 3.77 - 14.87 100 -1.27 -1.27 17.1 0.37 0.4 | 0.6
Igab 1,898 2.75-11.81 345 -0.74 -0.74 0.5 0.29 0.29 | 0.38
Ihyp 1,893 4.64 — 15.63 337 -0.75 -1.62 20.6 0.19 0.26 55 0.42
Ikjs 1,893 337 -13.68 77 -1.39 -1.68 30.1 0.79 0.76 | 0.78
11fb 1,893 2.47 - 1493 198 -0.98 -1.65 27.5 0.73 0.74 | 0.81
Imsi 1,894 5.84 — 14.52 107 -1.25 -1.58 32.7 0.47 0.49 | 0.59
Imzm 1,934 3.68 — 15.08 443 -0.64 -0.66 | 0.05 0.1 191 0.19
Inkl 1,898 273 -12.74 208 -0.96 -1.41 24.2 0.58 0.54 | 0.58
Inre 1,893 1.80—17.11 300 -0.8 -1.5 37 0.7 0.75 | 0.82
lorc 1,883 2.88 — 15.08 343 -0.74 -1.09 20.2 0.57 0.57 2 0.65
| pgx 1,851 5.03-16.75 465 -0.6 -0.6 0 -0.19  -0.17 126l -0.2
Ipou 1,898 228 -17.68 322 -0.77 -2.13 46.9 0.59 0.64 | 0.77
Iptq 1,885 542-12.23 368 -0.71 -1.29 1.7 0.12 0.09 | 0.41
1r69 1,733 2.26 — 12.58 218 -0.9 -1.03 30 0.73 0.76 | 0.74
Ires 1,723 1.89-9.15 475 -0.56 -0.57 0 013 0 334 -0.17
Isro 1,881 3.39-15.36 462 -0.61 -0.83 4.8 0.77 0.75 | 0.68
1 tif 1,849 261 —11.56 464 -0.6 -1.46 15.1 0.59 0.53 | 0.61
Ituc 1,894 449 - 16.85 37 -1.71 -2.16 35.9 0.66 0.66 | 0.69
luba 1,899 4.07 - 11.62 346 -0.74 -1.22 31.6 0.39 0.41 | 0.51
lutg 1,897 3.36 — 16.50 535 -0.55 -0.73 18.5 0.51 0.5 | 0.65
luxd 1,896 1.12-10.13 181 -1.02 -1.21 25.8 0.61 0.58 | 0.68
lvce 1,857 3.85-16.90 64 -1.46 -3.27 41.5 0.76 0.78 | 0.6
1vif 1,896 478 - 15.18 233 -0.91 -1.03 6.9 0.76 0.76 | 0.76
2ezh 1,893 2.34-18.26 510 -0.57 -2.24 28.5 0.56 0.57 | 0.68
2fow 1,834 4.03-13.89 59 -1.49 -2.22 39.3 0.46 0.54 | 0.64
2fxb 1,800 7.46 —19.02 58 -1.49 -2.3 47.8 0.75 0.75 | 0.48
2pdd 1,740 2.33-10.02 934 -0.27 -1.09 17.8 0.21 0.23 | 0.53
2ptl 1,835 221 —15.45 16 -2.06 -2.22 38.2 0.86 0.86 | 0.78
Sicb 1,870 298 — 13.68 527 -0.55 -2.49 30 0.59 0.62 | 0.7
Spti 1,853 4.88 — 1531 586 -0.5 -1.28 8.6 0.24 0.2 | 0.6
Average 1,858 3.38-14.87 -0.96 -1.56 25.2 0.54 0.56 0.6l

The PDB code, the number of decoy conformations (N), the RMSD range of the decoys relative to the experimentally determined conformation,
the RMSD ranking of the best-scoring conformation, the log probability of selecting the best-scoring conformation (log Pg,), the log probability of
selecting the lowest RMSD conformation in the top 10 best scoring conformations (log Pg,,), the fraction enrichment of the 10% lowest RMSD
conformations in the top 10% best scoring conformations (F.E.), the correlation coefficient between scores and RMSDs (C.C.), the Spearman's rank
correlation coefficient between scores and RMSDs (R.C.), the ranking of the experimentally determined conformation relative to the decoy

conformations based on density scores (R,,,), and the correlation coefficient calculated by the original formula used by Simons et. al. [27] (C.C.

are shown. In general, the density score function performs very well, with dependence on the properties of the decoy sets.

orig)
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Besides correlation coefficient (C.C.), the performance of
scoring functions can be evaluated by other measures that
emphasize particular features. For structure prediction
applications, where near-native conformations are rarely,
if ever, sampled, it is more important to know how the
decoys are ranked relative to each other and whether it is
possible to identify conformations that are closest to the
experimentally determined conformation. Three other
kinds of measurements are provided in Table 2 for the
evaluation of the density score function on 83 decoy sets
from seven sources: these are the log probability of select-
ing the best scoring conformation (log P, ), log probabil-
ity of selecting the lowest RMSD conformation among the
top 10 best scoring conformations (log Py, ), and the frac-
tion enrichment (F.E.) of the 10% lowest RMSD confor-
mations in the top 10% best scoring conformations (see
Methods). For comparison purposes, the correlation coef-
ficients based on the original formulation by Simons et al.
are also listed [27]. In their formula, they counted the
number of structural neighbors within a 7 A threshold
and used it as the score for a given conformation.

Table 2 shows that the performance of the density score
function is strongly dependent on the intrinsic properties
of decoy generation methods and the quality of the decoy
sets, with the best performance achieved in the
4state_reduced sets and the worst in the semfold sets.
Although in general the density scores have relatively high
correlation with C, RMSDs, they have negative correla-
tions in a small number of cases, indicating a failure of the
function on these decoy sets. These include one protein
(1jwe) in the fisa_casp3 sets and two proteins (1pgx and
1res) in the most recent Rosetta 10-14-01 sets.

Mechanism of the density score function

The 83 decoy sets used in our study were produced using
several different simulation methods, which may explain
why the same scoring function performs very differently
on sets generated by different methods [31]. To further
investigate how the density score function works, we plot-
ted four pairwise RMSD matrices using the decoy confor-
mations for the 1ctf protein (Figure 1). 1ctf represents the
carboxy-terminal domain of L7/L12 50s ribosomal pro-
tein from Escherichia coli and was chosen for this analysis
since it is present in four groups of decoy sets that we used
(4state_reduced, lattice_ssfit, Imds and semfold). The cor-
relation coefficients between the density scores and C,
RMSDs for 1ctf in these four decoy sets are 0.98, 0.71,
0.41 and 0.13, respectively (Table 2). Only the 1000 low-
est RMSD conformations were used for lattice_ssfit and
semfold sets because of their large size. For all the four
matrices, the upper left corner tends to be black, which
means that low RMSD decoy conformations tend to be
more similar with each other. The density score formula
calculates the overall distance between a given conforma-
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tion and all other conformations, so ideally it has a perfect
negative correlation with the density around the decoy
conformations. When conformations in a region tend to
have lower pairwise RMSD with each other, the density of
such a region will be higher, which explains the high cor-
relation between density scores and C, RMSDs of decoys
relative to the experimentally determined structure.

Based on the above observations, we propose a theory on
how the density score function works. During each step of
a simulation process, a scoring function is used to judge
whether a newly simulated conformation is energetically
more favorable than the previous one. This step is iterated
for certain times, and at the end of the simulation one or
a few low scoring conformations are kept, achieving a
local minima in terms of the scoring function. We call
such minima "scoring basins". The scoring basins may or
may not resemble the energy basin in conformational
space. Usually structure predictors repeat the simulation
process many times and save all the output conformations
which comprise the decoy sets. These decoys tend to accu-
mulate around such scoring basins so that the bottom of
the basin has a higher density relative to the upper part of
the basin. For exhaustive methods where the conforma-
tional space is evenly sampled, conformations near each
other in space are more likely to have similar structures;
once the non-native conformations are filtered out, simi-
lar structures tend to cluster together and scoring basins
are formed by the filtering criteria, as is the case for the
4state_reduced sets. When a scoring basin is in close prox-
imity to the energy basin, conformations around the bot-
tom of the basin are near-native ones. In this case, there is
a strong correlation between C, RMSDs and the density of
the space around these conformations. In our formula, we
use the sum of RMSDs between a given conformation and
with all other conformations in the decoy set to approxi-
mate the density.

For the four ensembles of decoy conformations depicted
in Figure 1, the conformations represented in the upper
left corner of the matrices have lower C, RMSD, so they
tend to reside near the bottom of the scoring basin. The
density is higher near the bottom, so decoys in that region
have lower pairwise RMSDs between each other, making
the cells darker than others. Interestingly, for the Imds set,
three obvious "black blocks" are seen in the correspond-
ing matrix. By examining the C, RMSD histogram of this
protein (Figure 2), we found that there are actually three
peaks, which account for the three "black blocks". This
means that the pathological tendencies of simulation
methods used in Imds sets may produce decoys that are
far from the native conformation but tend to cluster
together. In other words, three distinct scoring basins are
encountered during the fold simulation process around
which decoys tend to accumulate, yet only one of the

Page 6 of 18

(page number not for citation purposes)



BMC Structural Biology 2004, 4 http://www.biomedcentral.com/1472-6807/4/8

(a) 4state_reduced (b) lattice_ssfit

(c) Imds (d) semfold

Figure |
Pairwise RMSD matrix plot for |ctf in the 4state_reduced, lattice_ssfit, Imds and semfold decoy sets. Each column or row rep-

resents one decoy conformation, and each cell represents the pairwise RMSD between the two conformations that corre-
spond to the row and the column. Both columns and rows are ordered by the C, RMSD between the corresponding decoy
conformation and the experimentally determined conformation. The color of the cells reflects the value of the pairwise RMSD
between two decoys: the darker the cell, the lower the pairwise RMSD. The dimension of the four matrices are 630 x 630 (a),
1000 x 1000 (b), 497 x 497 (c) and 1000 x 1000 (d), respectively. Low-RMSD decoy conformations tend to have lower pair-

wise RMSD with each other.
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Figure 2

Histogram of C, RMSDs relative to experimentally determined conformation for the |ctf protein in the 4state_reduced,
lattice_ssfit, Imds and semfold sets. There are two peaks for the 4state_reduced set though only one scoring basin was found
in Figure 1. There are three peaks for Imds set, which happen to represent three scoring basins where decoy conformations

tend to accumulate.

basins can approximate the real energy basin. Because of
that, high-density conformations in this set may not be
near-native conformations if they reside in a wrong scor-
ing basin, and the correlation coefficients between density
scores and C, RMSDs of decoys relative to native confor-
mations cannot be very high. In the case of the
4state_reduced set, although there are two peaks in the C,
RMSD histogram, only one scoring basin is formed
because conformations are sampled evenly by this simu-
lation method. Here, the density scores have high correla-
tion with the C, RMSD of decoys relative to
experimentally determined conformations.

Based on our theory, when near-native conformations are
not sufficiently sampled, native conformations will not
necessarily have the highest density. This explains why for
most proteins, the density score ranking of the native con-
formation is not very high (Table 2, Column 10) in spite

of the high correlation between C, RMSDs and density
scores. Our goal for developing these scoring functions is
to select the most near-native conformations from a decoy
set, when the experimental structure is unknown. The
ranking of native conformation per se is not important for
structure prediction since it may not be an indicator of
how well a function can select near-native ones. In other
words, it is relatively easy to design functions that discrim-
inate the native conformation from a set of decoys, but
hard to design functions that can discriminate near-native
decoys from other decoys. The density score function (as
well as self-RAPDF) is highly dependent on the search
function used in the fold simulation process, and does not
contain explicit information about native conformations
(i.e., they are trained on decoys, not native conforma-
tions). Therefore, a complementary and good search
method must be used with density scores (or self-RAPDF)
at least for the initial decoy generation to minimize bias
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Table 3: Comparison of performance of the RAPDF and self-RAPDF on 83 decoy sets grouped by their generation methods.

Protein (PDB code) RAPDF Self-RAPDF

log Ppg, log Pg)q F.E.(%) Cc.C. log Pg, log Pg,q F.E.(%) C.C.
4state_reduced
lctf -2.50 -2.80 57.14 0.73 -2.32 -2.80 79.37 0.89
1r69 -1.93 -2.83 42.96 0.70 -2.83 -2.83 72.59 0.88
Isn3 -1.44 -1.97 4091 0.47 -2.82 -2.82 84.85 0.89
2cro -2.05 -2.23 45.99 0.76 -2.83 -2.83 78.64 0.92
3icb -1.40 -2.34 6891 0.85 -2.21 -2.51 8l.16 0.92
4pti -0.64 -2.54 23.29 0.49 -1.80 -2.84 87.34 0.89
4rxn -0.43 -2.35 53.18 0.57 -2.53 -2.83 78.29 0.88
fisa
1fc2 -0.86 -0.86 4.00 0.52 -0.39 -0.98 6.00 0.77
Ihdd-C -2.40 -2.40 44.00 0.55 -0.52 -1.80 30.00 0.74
2cro -2.40 -2.40 26.00 0.19 -0.66 -1.70 24.00 0.29
4icb -0.71 -1.30 20.00 0.20 -0.67 -1.12 26.00 0.46
fisa_casp3
Ibg8-A -0.94 -1.90 15.00 0.16 -0.80 -1.25 9.17 0.09
1bl0 -0.28 -2.69 12.36 0.18 -0.17 -0.20 47.37 0.59
leh2 =111 -1.80 18.65 0.25 -0.65 -2.91 43.93 0.53
ljwe -0.42 -1.19 2.84 -0.14 -0.12 -0.38 1.42 -0.23
130 -0.27 -1.65 12.14 -0.12 -0.58 -0.86 0.00 0.18
smd3 0.00 -0.57 4.17 -0.20 -0.59 -1.48 15.83 0.28
lattice_ssfit
Ibeo -0.86 -1.49 7.00 -0.02 -2.52 -2.52 12.00 0.09
lctf -0.15 -1.55 10.00 -0.06 -1.40 -1.48 23.50 0.15
I dkt-A -0.31 -3.00 10.50 -0.04 -1.43 -2.00 25.00 0.15
Ifca -0.07 -1.19 8.00 0.00 -1.32 -1.33 23.00 0.13
Inkl -0.05 -0.96 5.00 -0.19 -0.88 -1.54 7.50 -0.01
I pgb -0.16 -0.67 10.00 -0.07 -0.40 -0.40 8.50 0.04
ltrl-A -0.45 -1.10 7.50 -0.07 -0.62 -1.63 12.00 0.09
4icb -1.82 -1.82 21.50 -0.01 -1.76 -2.70 27.00 0.20
Imds
1bOn-B -0.06 -1.44 6.04 -0.21 -0.85 -2.00 16.10 0.10
Ibba -0.38 -1.85 16.00 0.23 -0.41 -0.49 0.00 0.15
lctf -0.32 -2.40 10.06 0.26 -0.38 -0.60 0.00 0.39
ldtk -0.14 -0.97 4.65 0.04 -0.38 -1.05 9.30 0.41
1fc2 -0.62 -2.10 8.00 0.02 -0.20 -0.62 6.00 0.27
ligd -1.18 -2.70 22.00 0.08 -0.57 -1.52 28.00 0.68
Ishf-A -0.10 -0.85 11.44 -0.03 -1.36 -1.36 13.73 0.14
2cro -0.10 -0.36 6.00 -0.22 -0.27 -0.39 0.00 -0.19
2ovo -0.58 -0.68 14.41 0.18 -1.50 -1.50 23.05 0.51
4pti -0.05 -1.93 23.32 0.09 -0.46 -1.28 29.15 0.53
unk -0.70 -1.27 16.00 0.17 -0.46 -0.85 6.00 0.10
semfold
lctf -0.39 -0.48 11.05 0.07 -0.34 -0.40 8.86 0.10
1e68 -2.62 -2.68 25.17 0.13 -0.17 -2.68 27.29 0.13
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Table 3: Comparison of performance of the RAPDF and self-RAPDF on 83 decoy sets grouped by their generation methods. (Continued)

leh2 -0.08 -0.29 14.51 0.07 -0.47 -0.55 19.84 0.10
Ikhm -0.09 -0.36 12.48 0.0l -0.34 -0.38 9.01 -0.03
Inkl =301 -3.11 17.67 0.10 -2.55 -2.77 20.07 0.21
I pgb -0.05 -0.59 15.07 0.05 -0.53 -0.76 15.51 0.10
Rosetta

1a32 -0.09 -0.31 0.00 -0.22 -0.97 -1.41 44.10 0.89
laa3 -0.14 -0.69 9.65 -0.06 -0.52 -0.70 6.97 0.44
lafi -0.54 -2.22 27.96 0.45 -2.18 -2.78 52.08 091
lail -0.07 -0.33 5.53 0.0l -1.77 -3.26 57.55 0.71
lam3 -0.08 -0.27 9.48 0.06 -2.38 -2.38 44.26 0.85
Ibq9 -0.38 -1 14.80 0.04 -1.88 -1.90 25.75 0.23
Ibwé -0.14 -0.89 18.42 0.49 -1.04 -2.22 4421 0.75
lech -0.42 -2.37 8.99 0.02 -0.20 -2.37 2431 0.24
I cei -0.27 -0.30 13.71 0.02 -1.18 -2.38 45.86 0.49
lesp -0.53 -1.30 11.06 0.04 -0.58 -1.47 16.58 0.31
lctf -0.04 -0.56 8.85 -0.06 -0.27 -1.64 21.33 0.31
Idol -0.57 -1.58 20.31 0.08 -0.69 -1.58 24.59 0.27
I gab -0.11 -1.49 14.75 -0.04 -0.64 -0.70 0.53 0.16
Ihyp -0.34 -0.34 3.17 -0.29 -0.89 -1.09 8.98 -0.24
Ikjs -0.91 -1.56 20.07 0.44 -1.39 -2.16 36.45 0.74
1Ifb -0.17 -0.55 5.28 -0.02 -1.86 -2.02 43.85 0.64
Imsi -1.35 -1.35 16.90 0.11 -0.83 -1.50 25.87 0.19
Imzm -0.81 -0.81 4.65 -0.19 -0.32 -0.85 0.52 -0.13
Inkl -1.07 -1.35 20.55 0.10 -0.96 -1.03 17.39 0.53
Inre -0.30 -0.37 3.17 0.05 -0.94 -2.68 50.71 0.74
lorc -0.03 -0.43 0.00 -0.35 -0.74 -1.03 21.24 0.43
I pgx -0.07 -0.38 1.08 -0.55 -0.37 -0.47 1.08 -0.39
Ipou -0.29 -1.65 11.06 0.05 -2.13 -2.80 54.27 0.49
Iptq -0.12 -1.39 16.98 0.07 -0.87 -1.31 9.55 0.01
1r69 -0.51 -1.20 19.04 0.14 -1.82 -1.82 53.09 0.6l
Ires -0.95 -1.50 13.35 0.00 -0.41 -0.57 0.00 0.0l
Isro -0.55 -1 15.95 0.15 -0.66 -0.84 18.08 0.68
| tif -0.53 -1.93 15.68 0.11 -1.17 -1.93 42.19 0.6l
Ituc -0.55 -0.78 11.09 0.18 -1 -1.90 33.79 0.71
luba -0.56 -0.74 4.74 -0.10 -0.63 -2.05 22.12 0.19
lutg -0.16 -1.42 7.38 0.02 -0.73 -0.80 26.36 0.56
luxd -0.29 -0.58 13.19 0.07 -1.20 -2.43 29.54 0.79
lvee -0.05 -0.80 13.46 0.17 -1.46 -2.42 29.08 0.47
I vif -0.24 -3.28 37.45 0.39 -0.97 -0.97 11.08 0.74
2ezh -0.53 -1.13 26.41 0.40 -0.86 -1.06 36.98 0.78
2fow -0.52 -0.57 9.27 0.13 -1.25 -1.39 25.63 0.51
2fxb -0.43 -2.65 11.67 0.05 -0.87 -2.65 29.44 0.40
2pdd -0.01 -2.01 16.09 -0.04 -1.01 -1.56 3851 0.45
2ptl -0.35 -2.06 20.71 0.17 -1.65 -2.06 39.78 0.72
Sicb -0.57 -0.99 21.93 0.40 -1.02 -2.57 32.62 0.66
Spti -0.12 -0.34 1.08 -0.15 -0.50 -1.28 9.17 0.09

For legends please refer to Table 2. The self-RAPDF has better performance than RAPDF in terms of log Py, (62/83 decoy sets), log P, (56/83

decoy sets), F.E. (63/83 decoy sets) and C.C. (76/83 decoy sets).

to erroneous conformations, which is the case for the
methods used to generate our decoy sets. Finally, a scoring
function that scores native conformation well is depend-
ent on the particular types of native conformations that it
is derived from. In our case, for 57 out of 83 decoy sets,
the native conformation (or its slightly refined version; C,
RMSD < 0.2 A) scores as the top best conformation by the
original RAPDF. Of the remaining 26 decoy sets, the

native conformation for 11 of them are derived by NMR
spectroscopy which usually do not score well with RAPDF
since the function is parameterized on structures derived
from X-ray crystallography (Liu and Samudrala, manu-
script in preparation).
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Comparison of the performance of RAPDF and self-RAPDF on 83 decoy sets grouped by their generation methods. The aver-
age value and standard error of log Py, log Py, fraction enrichment (F.E.) and correlation coefficient (C.C.) for each group of
sets are shown. In most cases, self-RAPDF performs better than RAPDF.

Performance of self-RAPDF

For every decoy set, we generated a separate set of atom-
atom contact probabilities using a formulation similar to
the residue-specific all-atom scoring function (RAPDF)
[7]. Using this function, called self-RAPDF, we scored all
the decoy conformations used to compile the function,
and evaluated the performance of the function with the
four measures described before. Table 3 compares the per-
formance of the RAPDF and the self-RAPDF on individual
decoy sets, and Figure 3 compares the performance on the
decoy sets grouped by their generation methods. The self-
RAPDF has better performance than RAPDF in terms of
log Py, (62/83 decoy sets), log Py, (56/83 decoy sets), F.E.
(63/83 decoy sets) or C.C. (76/83 decoy sets). We noticed

that the performance of self-RAPDF is highly dependent
on the performance of the density score function, which
specifies the weighting scheme in generating the self-
RAPDF. Because of the high correlation between C,
RMSDs and the density scores, the self-RAPDF generated
higher correlation with C, RMSDs than RAPDF in all
decoy groups. However, for some proteins in the fisa and
semfold sets, self-RAPDF did not tend to pick lower RMSD
conformations over RAPDF, as judged by the mean of log
Py, for these groups of sets. This suggests that when per-
forming structure selection, we can choose RAPDF or self-
RAPDF based on the decoy generation methods to achieve
the best results. However, since self-RAPDF almost always
has better performance than RAPDF in terms of correla-
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Histogram of log Py, (upper panel) and correlation coefficient between RMSD relative to experimentally determined conforma-
tion and scores (lower panel) generated by the RAPDF, the density score function and the self-RAPDF for the 41 decoy sets
generated by the Rosetta method. Both the density score function and self-RAPDF perform much better than RAPDF for these

sets.

tion with RMSD, this means self-RAPDF may be a better
scoring function than RAPDF to be used in fold simula-
tion during the structure refinement process.

More recent decoy sets such as those generated by the
semfold method [34] or the Rosetta method [35] provide
particularly challenging tests for scoring functions,
because the decoys were assembled from fragments of
experimentally determined structures. These sets contain a
subset of misfolded conformations with similar local
interactions, but are globally distant from the native fold.
As a consequence, discriminating near-native conforma-
tions from the semfold [29] and the most recent Rosetta
10-14-01[30] sets is expected to be more challenging for
any scoring function [36], and few results have been
published on the performance of scoring functions using
these decoy sets.

Unlike the density score function, the self-RAPDF can be
used for not only structure selection, but also fold simula-
tion. Therefore, it is especially important for self-RAPDF
to have high correlation with the RMSD of decoy confor-
mations. We compared the performance of RAPDF and

self-RAPDF on the Rosetta sets in terms of log Py, and cor-
relation coefficients (Figure 4). RAPDF generally per-
formed poorly on these decoy sets, while self-RAPDF was
superior at discriminating low RMSD structures for these
decoy sets for 37/41 proteins, in terms of the C, RMSD of
the best scoring conformation.

Figure 5 shows the scatter plot of the self-RAPDF scores
versus C, RMSDs of decoys relative to experimentally
determined conformations for all 41 proteins in the
Rosetta sets. A large fraction of near-native conformations
were sampled in these sets [30]. Scores for most of the
proteins have very good correlation with C, RMSDs except
l1hyp, 1mzm and 1pgx. The density score function for
these 3 proteins had either negative or near-zero correla-
tion with C, RMSDs (Table 2), which explains the poor
performance of the self-RAPDF on them.

We also observed that neither RAPDF nor self-RAPDF has
satisfactory performance on the semfold decoy sets (Fig-
ure 6). From our previous experience, these sets are diffi-
cult. None of the scoring functions we used before had
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Self-RAPDF score versus C, RMSD for 41 most recent Rosetta 10-14-01 decoy sets [30]. For most sets, self-RAPDF scores
tend to have high correlation with C, RMSDs between decoys and experimentally determined conformations.

good correlation with C, RMSD on these decoy sets. Some
possible reasons to explain the poor performance are
detailed in the Discussion section.

Discussion

Current scoring functions generally try to maximize the Z
score to discriminate native conformations from near-
native ones, but perform poorly in the real problem that
we are facing with in structure prediction: selecting the
most near-native conformations from an ensemble of
decoys. Here, we introduce two decoy-dependent scoring
functions, the density score function and self-RAPDF,
which can be used to aid structure selection. They work
better at selecting the most near-native conformations
compared to previously published results.

It has been hypothesized that the behavior of the density
score function represents a feature of the protein energetic
surface [26], i.e., that the lowest energy conformation is
the most populated one. A simpler explanation is that

what we are observing is purely a statistical phenomenon:
traditional scoring functions are not perfect, and if they
are partially correct, then it is likely that two
conformations that are close to each other are also likely
to be close to the native conformation. In effect, the
conformation with the best score is the median, i.e., the
one with the smallest total distance to every conformation
in the entire decoy set. By taking into account the ensem-
ble of conformations generated by the scoring function,
we maximize the amount of information used. In other
words, conformations that score poorly by a discrimina-
tory function also have information content that can be
used to achieve better discrimination.

We therefore argue that the resulting ensemble of confor-
mations after a structure prediction process will not be an
unbiased sampling of the real energy basin. Instead, we
propose that since any scoring function used in structure
simulation cannot be perfect, it will form one or more
scoring basins that may or may not resemble the real
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Figure 6
Scatter plot of RAPDF score or self-RAPDF score versus C, RMSD for six semfold decoy sets. Both RAPDF score and self-
RAPDF score do not discriminate decoys well on these sets.

energy basin. These decoys then accumulate around the  native conformations are sampled in the decoy sets, we
scoring basins, instead of the energy basin. When a scor-  expect good performance from density-based approaches.
ing basin is near the energy basin, i.e., when a lot of near-  Otherwise, we do not expect high correlation between the
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density around a given decoy conformation and the spa-
tial distance between this conformation and the bottom
of the energy basin, where the native conformation
resides.

The key to the success of such decoy-dependent scoring
functions is that near-native conformations are ade-
quately sampled in the conformational space, which is
not true in some cases. This in part accounts for the failure
of both functions on some proteins in the fisa_casp3,
semfold and Rosetta decoy sets. On the other hand, the
intrinsic properties of the simulation process itself may
dictate whether these functions will work well or not. This
explains why decoy sets generated by the same simulation
methods tend to have similar performance with a
particular scoring function, but the performance is diver-
gent across those sets from different sources. The
4state_reduced sets always yield the best performance for
most scoring functions, since they are generated by sam-
pling conformational space around native conformations
evenly, using knowledge of the experimental structures. In
such cases, the scoring basin should largely overlap with
the energy basin of the proteins. The semfold and Rosetta
sets are similar in that both of them are generated by
assembling small pieces (3-9 amino acid residues) of
local conformations from experimentally determined
structures, and thus both sets provide a challenge. The
density score function and self-RAPDF perform reasona-
bly well on the Rosetta decoy sets with a few exceptions,
but perform unsatisfactorily on the semfold sets. One rea-
son is that the semfold sets does not contain as many
near-native conformations as the Rosetta sets (Table 2). It
is also worth noting that RAPDF itself was a component of
the scoring function used in the semfold structure simula-
tion process. We therefore expect that the scoring basin
itself be biased toward correct RAPDF atom-atom con-
tacts. So decoy conformations in semfold sets are already
minimized in terms of the normal range of atom-atom
contacts, and would not be easily discriminated by
another atom-atom contact probability scoring function
such as self-RAPDF.

It is not very surprising that self-RAPDF works better than
RAPDF when near-native conformations are sampled ade-
quately in the decoy sets. The RAPDF scoring function was
compiled from an ensemble of native structures in certain
structure databases, such as the Protein Data Bank (PDB),
which contains very diverse conformations with bias to
certain types of folds. The statistics may not work well for
certain protein targets if their folds are not represented in
the experimentally determined structure database. Self-
RAPDF is compiled from an ensemble of decoy conforma-
tions, some of which resemble the native fold. So if a large
fraction of near-native conformations are present in the
decoy set, appropriate residue-specific atom-atom

http://www.biomedcentral.com/1472-6807/4/8

contacts for the particular sequence are more likely to be
present in these decoys. Compiling this contact informa-
tion can help in determining whether a given decoy
conformation conforms to the majority of near-native
conformations.

Besides RAPDF, other knowledge-based scoring functions
have been developed in recent years with varying degrees
of success [8-10]. These functions usually compile some
statistics from databases that contain experimentally
determined structures, and use such statistics to test the
probability of a given conformation to be native-like. The
results in this paper also have implications on the per-
formance of other knowledge-based scoring functions.

Other structure clustering algorithms similar to our scor-
ing functions have been applied in previous CASP experi-
ments for structure selection. Simons et al. used the
number of structural neighbors within a certain RMSD
threshold as the basis of the clustering during the CASP3
experiment [27], and Bonneau et al. used simultaneously
clustering of conformations using an iteratively reduced
RMSD cutoff [28]. The original clustering algorithm fixed
the RMSD cutoff to generate clusters of different sizes, but
the simultaneous clustering algorithm fixed the size of
each cluster to contain ~100 conformations. They worked
well for the decoy sets generated by Rosetta method, but
their performance was not reported for other decoy sets.
Compared to these clustering algorithms, both the density
score function and the self-RAPDF function give quantita-
tive scores for every decoy conformation. In addition, the
self-RAPDF function can be used in structure refinement
and fold simulation, after an initial decoy set has been
generated.

The weighting scheme in our work was chosen somewhat
arbitrarily. Only a small fraction of conformations have
low C, RMSDs for any given decoy set, which are the ones
that we are most interested in. We seek to derive weights
to inflate the contribution of these low-RMSD
conformations to the self-RAPDF function. However, the
low-RMSD conformations cannot be identified without
knowledge of the experimentally determined structures.
Since the density score function usually has high correla-
tion with C, RMSDs, we can use it as a surrogate of how
similar a given decoy conformation is to the experimen-
tally determined conformation, and derive weights based
on the density scores. An exponential weighting scheme
based on the density scores is shown to work quite well.
Other weighting scheme parameterized on other scoring
functions need to be explored.

During a fold simulation, we need a scoring method to
evaluate the quality of newly simulated conformations
relative to those already generated. This method should
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be reasonably fast, and have a relatively high correlation
to the accuracy of predicted conformations. Currently we
are using the RAPDF as one such component in our de
novo structure prediction protocol [34]. Based on the high
correlation of self-RAPDF scores and RMSDs relative to
experimentally determined conformations, it is also pos-
sible to use self-RAPDF for further refinement of predicted
protein conformations. Further work is needed to test this
hypothesis.

Conclusions

In conclusion, both the density score and the self-RAPDF
functions are decoy-dependent scoring functions for
improved protein structure selection. The implementa-
tion of both methods is simple, and the execution is very
fast, so they can be applied to very large decoy sets. Both
scoring functions compile information from the ensem-
ble of decoy conformations, based on the assumption that
a large fraction of near-native conformations are sampled
in the decoy set, and these decoys can provide informa-
tion about the native conformation. Unlike other knowl-
edge-based scoring functions, both functions used here do
not use any knowledge of experimentally determined
structures. Besides structure selection, the self-RAPDF may
also aid in fold simulation, the effectiveness of which is
currently being evaluated. Based on our work, it is reason-
able to assume that other knowledge-based scoring func-
tions can also compile statistics from decoy
conformations, for use in both structure selection and
simulation.

Methods

Formulation of the density score function

Suppose a decoy set contains n decoys x, x,, ..., x,,. For any
given decoy x; (1 < i < n), the density score is calculated
using the formula:

Si=ZTij/n (1)
j=1

where §; is the density score of decoy x;, 7; is the pairwise
C, RMSD between decoy x; and decoy x; (1 <i,j <n).

Formulation of the self~RAPDF function
For a given decoy set, we first normalize the density scores
to be between -1 and 1 using the following formula:

, E(Si = Suedian) | (Smedian = Smin) if Si < Simedian
Si =0 0 if S; = Siedian (2)
E(Si = Smedian) /(Smax ~ Smedian) if Si > Sedian

where S; is the normalized density score for decoy x;, and

S is the median density score for the set.

median

http://www.biomedcentral.com/1472-6807/4/8

Each decoy conformation is weighted according to its nor-
malized density score:

W, =S (3)

where W, represents the weight of decoy x; and k is a con-
stant. In this paper we choose k to be 5. The contribution
of each decoy conformation is multiplied by its own
weight during the compilation process of the self-RAPDF
statistics.

The all-atom scoring function, RAPDF, was used to calcu-
late the probability of a conformation being native-like,
given a set of inter-atomic distances. A full description can
be found in the original paper [7]. The compilation of
self-RAPDF library uses a modified version of RAPDF and
incorporates the weighting scheme described above.
Briefly, the required probabilities are compiled by count-
ing frequencies of distances between pairs of atom types
in a decoy set. The counts for each conformation are mul-
tiplied by its weight, and are summed together to generate
an overall probability. All non-hydrogen atoms are con-
sidered, and the description of the atoms is residue spe-
cific, which results in a total of 167 atom types. We divide
the observed distances into 1.0 A bins ranging from 3.0 A
to 20.0 A. Contacts between atom types in the 0.0-3.0 A
range are placed in a separate bin, resulting in a total of 18
distance bins.

We compile tables of scores s proportional to the negative
log conditional probability that we are observing a native
conformation given an inter-atomic distance d for all pos-
sible pairs of the 167 atom types, a and b, for the 18 dis-
tance ranges, P(C | d):

- P (dab | 9
s(dg) = —In P(d ) O InP(C|dy) (4)
where P(d;|C) is the probability of observing a distance d
between atom types a and b in a correct structure, and
P(d,,) is the probability of observing such a distance in
any structure. The required ratios P(d,,|C)/P(d,;,) can be
obtained by:

> WiNWap) |y 4y WiN(day)
S w S WNEDS 0 S .S WiN(diy)

where N(d;b) is the number of observations of atom

P(dgy |C) _
P (dab )

(5)

types a and b in a particular distance bin d in decoy x;, and
W, is the weight for decoy x; from equation (3). No intra-
residue distances are included in the summation.
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Source of decoy sets
The decoy sets used for the evaluation of these scoring
functions were obtained from the Decoys 'R' Us database

http://dd.compbio.washington.edu and the most recent

Rosetta 10-14-01 decoy set http://www.bakerlab.org. We
used only those decoy sets that contained a reasonably

large number (>100) of decoy conformations, resulting in
83 decoy sets from seven different sources (4state_reduce,
fisa, fisa_casp3, lattice_ssfit, Imds, semfold and Rosetta).
The 4state_reduced sets were generated by exhaustively
enumerating 10 selectively chosen residues in each pro-
tein using a 4-state off-lattice model, and filtering the con-
formations with a variety of criteria [12]. The fisa,
fisa_casp3, semfold and Rosetta sets were generated using
a fragment insertion simulated annealing procedure to
assemble near-native structures from fragments of unre-
lated protein structures with similar local sequences
[30,34,35]. The lattice_ssfit sets were generated by exhaus-
tively enumerating sequence on a tetrahedral lattice and
filtering the conformations by a combination of all-atom
functions [37]. The Imds sets were generated using a scor-
ing function which is based on a united and soft atom ver-
sion of the "classic" ENCAD forcefield that ensures that
local minima are chemically valid with reasonable
geometry and without clashes [29]. More detailed descrip-
tion of these sets is available in the corresponding
websites.

Methods used to evaluate scoring functions

Four different methods were used in this study to evaluate
the performance of scoring functions, emphasizing their
different aspects. These include:

(1) log Pg,: The log probability of selecting the best scor-
ing conformation. Suppose the best scoring conformation
x; has the C, RMSD rank of R; in n decoy conformations,
this probability can be calculated as

log Py, = log,o (R/n)  (6)

(2) log Pg,o: The log probability of selecting the lowest
RMSD conformation among the top 10 best scoring con-
formations. Suppose x; has the lowest RMSD among the
10 best scoring conformations, with the RMSD rank of R;
in all the N decoy conformations, this probability is calcu-
lated using the above formula. Since the number of
conformations varies a lot for different types of decoy sets,
dividing the rank by 7 in the formulation of both logP;,
and logP;,, ensures a fair comparison between different
decoy sets.

(3) E.E.: Fraction enrichment of the top 10% lowest
RMSD conformations in the top 10% best scoring
conformations.

http://www.biomedcentral.com/1472-6807/4/8

(4) C.C.: The correlation coefficient between C, RMSDs
and the scores generated by the scoring function.

Score calculation and data analysis
The structure preparation and score calculation were per-
formed using the RAMP program suite, available at http:/

[software.compbio.washington.edu. Additional data

analysis was done using the statistics software STATA
(College Station, TX, USA).
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