
The Bioverse: An object-oriented genomic database and webserver written in Python

Jason McDermott and Ram Samudrala

Department of Microbiology, University of Washington

mcdermottj@compbio.washington.edu
ram@compbio.washington.edu

The recent success of numerous genomic sequencing efforts have created a great
demand for systems to organize, represent and interpret the huge amount of data
available. The Bioverse is a database designed to provide a framework for exploring the
relationships among the molecular and genomic, proteomic, systems, and organismal
worlds. We implemented the Bioverse in the open-source scripting language Python [1]
using an object-oriented programming model. The result is a highly flexible framework
for the processing and representation of bioinformatics information. We have
implemented parallel processing and data schemes for this framework so that the work
and data storage can be distributed over our 200+ CPU LINUX cluster. The objects we
have created in this framework are reusable, easily extensible and can be configured
using control files with a simple syntax. To date, we have applied our framework to 11
genomes including the Oryza sativa (rice) [2] and Homo sapiens [3] genomes. The
current version of the Bioverse (1.0) contains an unsurpassed level of annotation
information for over 150,000 unique sequences, including secondary structure
predictions, family and domain classifications, homology and protein-protein interaction
predictions. A large number of unannotated sequences from the rice genome were
assigned annotations by the Bioverse. And on the whole genome scale, networks based
on protein-protein interactions and evolutionary relationships have been derived. The
webserver represents the user-interface to the database and is available at
http://bioverse.compbio.washington.edu.

Overview
The state of post-sequencing genomics mandates a flexible approach to any

attempt at representation and organization of the information derived from protein
sequences. The vast number of databases, search techniques and prediction methods that
are currently available and those that will be developed may need to be integrated into
our database. To this end we chose an object-oriented approach for our framework. A
generalized view of the dataflow from this framework is shown in Figure 1.

We chose to implement our framework in the open-source scripting language
Python. Python has the functionality of low-level compiled languages like C as well as
higher level features, such as built in support for complex data types. Importantly, Python
is very object-oriented, providing clear and unambiguous class creation, subclassing,
multiple inheritance and automatic documentation and is supported on nearly all
platforms. As a scripting language, the speed of Python was a concern. However, the
most computationally intensive operations being performed are all stand-alone programs
(e.g. BLAST [4], HMMPfam [5]) and are accessed through Python’s UNIX process

control library. In addition, Python has a simple and easy to use API for wrapping
existing C programs or writing computationally intensive subroutines.

Database Structure
Each genome is represented by a Database object which stores all global

information pertaining to the genome. The database creates Record objects, each of
which represent a unique sequence in the genome and its associated data. Atom objects
store the smallest units of bioinformatic data (single BLAST results, secondary structure
predictions, etc.) pertaining to a particular record. The modularity of this approach makes
the Record easily able to accommodate new types of information which may be added to
the framework.

Since all low-level I/O is handled through the Record class, the format of low-
level data can be easily changed. We have developed a preliminary implementation of an
SQL-format database and an XML schema for storing information in a less flexible but
more standardized manner.

Parallel Framework
The computationally intensive nature of many of the methods used to generate

data for the database encouraged us to design our framework with parallel processing in
mind. A BLAST search on a single protein sequence can take several minutes of CPU
time and automated structural prediction by gene threading may take many hours or
more, so applying these methods to tens or hundreds of thousands of protein sequences is
a non-trivial task. Distribution of processing on our 200+ CPU LINUX cluster is
accomplished through a program which reads a database, breaks it into blocks of records
of a specified size, spawns remote processes on the cluster that act on the record blocks
and then monitors the processes for completion. This approach, though simpler than
many other parallel processing approaches, fits well with our data structure, is very
flexible and has a very low computational overhead.

A potential pitfall of our parellel processing approach is bottlenecks caused by
network I/O from many CPU’s at once. To alleviate this problem we distribute the data in
our databases over multiple filesystems so that requests to the database are handled by
multiple machines. A larger concern than the data from individual records is the data
required for the method being applied to the sequences. The NCBI BLAST database [4],
for instance, is approximately 200 Mb in size. In a centralized distribution approach, files
of this size would have to be transferred to every client filesystem from one master CPU
before any processing could proceed. Our solution to this problem is to have each remote
process check for a local copy of a library of large data files. If there is no local copy the
remote process requests one from one of the multiple server systems and makes a local
copy. Version checking has been implemented to ensure that older data is not mixed with
newer if any of the data sources is updated. There is a large advantage to this
decentralized data distribution approach over a centralized one. For instance, running a
BLAST search on a typical bacterial genome (~5000 sequences) using a centralized data
distribution scheme and 50 CPUs takes over 30 hours, using our data distribution
framework this time is cut to approximately 2 hours. A eukaryotic genome, such as the
rice genome with nearly 60,000 sequences, takes approximately 10 days of computation
time on 60 CPU’s to generate all the data currently included in the Bioverse (running

approximately 15 bioinformatics programs, parsing the results, and generating global
hash tables and network views).

Data Generation
We expected the nature of our database and the nature of the bioinformatics

methods required to evolve over time. To this end, we designed a highly flexible
processing environment to perform the back-end generation and processing of Record-
related data. Action objects perform operations in the Database and can be specified
through a formatted definition file. Since each Action object defines its user-accessible
parameters and calling keyword this approach defines a flexible programming language
for database operations.

The Bioverse Server
An important measure of the success of an integrated bioinformatics database like

the Bioverse is how useful it is to the scientific community in general. One part of this is
the quality of the data in the database, the other, equally important part is how well this
information is presented. We designed the Bioverse webserver with certain goals in mind.
From our perspective the server must be flexible to allow incorporation of new
bioinformatics data as it is added to the Bioverse and to allow easy modification of how
this data is presented. From the users’ perspective the server must be fast, robust and easy
to use and must allow for customization of what data is displayed and how it is displayed.

The heart of our server is the ElementServer class, a server class based on
Python’s BaseHTTPServer, a simple yet robust multi-threading http server class. Similar
to the Actions framework described above, the server is comprised of a hierarchy of
Element objects which processes a user’s request and returns an HTML page based on
the request. An Element object has methods for initialization of the object and any
dependent Element objects, for processing incoming server requests passed from its
parental element, and for describing how the element’s data is passed back to its parent in
the form of HTML.

In the Bioverse server, the presentation of global database information is
established when the server is started. Element hierarchies pertaining to individual
genomic records are created dynamically when requested and are kept in a cache to allow
quick access to recently requested records. At the lowest level of these hierarchies are
HTMAtom elements, objects based on corresponding database Atom classes but which
have methods specifying how their data should be presented in HTML. A hierarchy
defining the meta-groups of sequence, structure and function are built on top of the
HTMAtom objects (Figure 2). Display of these meta-groups and groups below them in
the hierarchy are controlled by the user through their interaction with icons on the record
display HTML page (Figure 3).

Conclusions
We have implemented a fully object-oriented framework for processing,

integration and presentation of a large number of different bioinformatics approaches and
have applied this approach to the Oryza sativa genome as well as 10 other eukaryotic and
prokaryotic genomes. Our framework is built of reusable components which can be
easily reconfigured or extended as need demands. The feedback cycle of development,

implementation, and evaluation dictating further development is thus expedited.
Suggestions from the scientific community can easily be incorporated into our structure
and new bioinformatics methods can be added with a minimum of coding. Because of the
object-oriented nature of our framework we are able to easily transfer it to a standard
object-oriented database management system (OODBMS) [6]. An advantage of storing
our data in an OODBMS is that it can improve performance for complex data such as
complicated graphs, by 10-1000% compared to standard relational databases [7, 8].The
current version of the Bioverse (version 1.0) has parallel, distributed data generation and
storage, incorporates data from approximately 15 external data sources and 7 prediction
methods, and provides a powerful interface to access the information generated by these
methods.

Acknowledgements
This work was supported in part by a Searle Scholar Award to Ram Samudrala and NSF
Grant DBI-0217241.

References
[1] Python home page <http://www.python.org>.
[2] Yu J., Hu S., Wang J., Wong G., et. al. 2002. A draft sequence of the rice genome

(Oryza sativa L. ssp. indica.). Science 296:79-92.
[3] Lander E.S., Linton L.M., Birren B., Nusbaum C., et. al. 2001. Initial sequencing and

analysis of the human genome. Nature 409: 860-921.
[4] Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.

1997. Gapped BLAST and PSI-BLAST: A new generation of database programs.
Nucleic Acids Research 25: 3389-3402 (1997)

[5] Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14: 755-763.
[6] PostgreSQL <http://www.postgresql.org>.
[7] Harrington J. 1999. Object-oriented Database Design Clearly Explained. organ

Kaufmann Publishers, 1st edition.
[8] Object-oriented Databases <http://www.odbmsfacts.com>.

Figure 1.
Bioverse Dataflow Diagram. Generalized information flow in the Bioverse database.

GO
 C

las
sif

ica
tio

n
Expression

Microarray

BLOCKS (BLAST)

PRINTS (BLAST)
ProDom (BLAST)

Pfam (HMMER)
SMART(HMMER)
TIGRFAMs (HMMER)
PROSITE (ppsearch)

InterPro

Families/Domains/Motifs

Web Serve r

Information

View Records

Browse Indexes

Search Indexes
Submit Sequences

DIP (BLAST)

GO
 C

las
sif

ica
tio

n

Experimental
Data Sources

EMBL/Genbank
PDB
Users
Collaborators

BLAST (BLAST)

Functional Classificatio n

PDB (BLAST)

SCOP (SAM-T99)
ASTRAL (BLAST)

memsat

PsiPred
biopred

2D Structur e

3D Structur e

Functional Interactio n

Functional Similarit y

SS Prediction

Membrane Prediction

Interaction

Similarity/Homology

structural

ab initio

Comparative Modelling

HMMTOP

Sequenc e

Structur e

Functio n

GenTHREADER

RAMP

RAMP

Modeller

Database Schem a

Index Keywords
Index Function

Index Structure
Index Sequence

Sequence Similarity Links

Functional Similarity Links

Structural Similarity Links

Interaction Links

Expression Links

Yeast 2-Hybrid

XML

Flat Fil e

Expressio n

ModBASE

SAM-T99

Mass-Spec

Genome
Sequencing
Projects

Structural
Genomics
Projects

Figure 2.
Database Schema. A simplified version of the Bioverse database object-oriented schema.
The schema will be extended as more data sources and methods are integrated into the
database.

Figure 3.
Bioverse Screen Shot. An example of a Bioverse session showing the HTML display of a
Record object. All colored icons to the left of the data field can be used to open or close
subsections of the Record heirarchy. The current Record is shown with the Information
section open under the Sequence heading (displaying identifiers from other databases for
this sequence), data contributing to the two-dimensional structure prediction in the
Structure heading, and evidence for the Usp Interpro function (HMMPfam match) under
the Function heading.

