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ABSTRACT:

The Critical Assessment of Protein Structure predic-
tion methods (CASP) experiments have shown that
structure prediction methods are slowly maturing and
producing results that are useful in posing and answering
biological questions about protein function. We have
taken part in all four CASP meetings in both the
comparative and ab initio modelling cate-gories. In this
paper, we describe the evolution of our methods from
CASP! to CASP4, present results from the most recent
experiment, and explore future directions. We discuss the
utility of the models produced by our methods in the

context of ongoing structural and functional genomics

efforts.
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Lessons from structure prediction experiments

INTRODUCTION

The state of blind protein structure prediction

There are two primary categories of methods for predicting protein structure from sequence:
comparative and ab initio modelling. In the comparative modelling category, the methodologies
rely on the presence of one or more evolutionarily related template protein structures that are
used to construct a model; the evolutionary relationship can be deduced from sequence
similarity [1, 2, 3, 4] or by “threading” a sequence against a library of structures and selecting the
best match [5, 6, 7). In the ab initio category, there is no strong dependence on database
information and prediction methods are based on general principles that govern protein
structure and energetics [8, 9, 10, 11, 12). The categories vary in difficulty, and consequently
methods in each of these categories produce models with different levels of accuracy rel-ative to the

experimental structure.

Protein structure prediction methods are rigourously evaluated by the Critical Assessment of
Structure Prediction (CASP) experiments held every two years [13]. These experiments evaluate
prediction techniques by asking modellers to construct models for a number of protein sequences
before the experimental result is known, over a period of 3-4 months. We have taken part in all four
CASP experiments, including the most recent one (CASP4) that finished in December 2000 [14].
The CASP4 results provide a benchmark as to what level of model accuracy we can currently expect

from our approaches.

At CASP4, we made predictions for all of the 40 targets for which an experimental answer was
determined [15]. The CASP4 results show that within each of the general structure prediction
categories, some methods, including ours, are able to produce models with a fair amount of

accuracy. Further improvements are necessary to overcome the limits of current approaches.

The CASP experiments also show that there is not one single algorithm that can “solve” the
protein structure prediction problem. The most successful methods are those that combine
and build upon the techniques developed by several researchers in the last thirty years (special
issues of Proteins: Structure, Function, Genetics, 1995, 1997, 1999, and 2001). Generally the
methods have incorporated different sampling techniques and a variety of scoring functions
each of which aids prediction of structure only to a limited degree when used individually,
but produce models useful for further biological study when combined together in a coherent

manner.

Our own approaches combine monte carlo, simulated annealing, genetic algorithms, graph
theory, and semiexhaustive searches with move sets consisting of fragments and discrete state
models, and scoring functions consisting of all atombased pairwise functions, hydrophobicity
indices, secondary structure preferences, and hydrogen bonding. Our goal is to continue to develop
components that form a structure prediction engine, combining and innovating upon previously
developed approaches by observing what methods work well at previous CASP experiments, and

adding new components of our own.
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METHODS OVERVIEW

The methods developed by the author for modelling proteins {(during the course of the last nine
years) is embodied in a suite of publicly available software programs [16] used by many other
researchers around the world and by our group. In this work, we describe the methods that have
worked well for us at CASP blind prediction experiments. The techniques used are divided based
on the two major structure prediction categories, but methods developed for application in one

category are useful in the other.

Comparative modelling and fold recognition

Alignment and template selection

A protein sequence that is evolutionarily related to sequences with known structure (determined
by X-ray crystallography or NMR techniques) is modelled using comparative modelling techniques
developed by us, which are among the most competitive at the CASP experiments. We use a
combination of methodologies that are grouped together as shown in Figure 1. If the sequence
relationship between the template structures and the target protein is unambiguous (usually when
the sequence identity is > 40%), or if there is only one protein with known structure in the family,
then the template structure serves as the sole initial model. If there are many possible template

structures, models are constructed using all available templates.
Generation of multiple alignments

PSIBLAST alignments and other publicly available servers such as GenTHREADER [17] and
SAM [18] are used to generate a variety of choices for alignments. These alternate alignments are
also used to construct initial models. Thus, for a given protein in a family with at least one known
representative structure, there could be many alignment choices for constructing the initial models.

Constructing initial models

Following the sequence alignment, for each template structure, an initial model is generated by
copying atomic coordinates for the main chain (excluding any insertions/loops) and for the side
chains of residues that are identical in the target and template proteins. Residues that differ in side
chain type are constructed using a minimum perturbation (MP) technique [19]. The MP method
changes a given amino acid to the target amino acid preserving the values of equivalent torsion
angles between the two side chains, where available. The other angles are constructed using an
internally developed library based on residue type [20]. In its current form, the MP method uses a
simple library based on the most frequently observed values to determine torsion angles not present

in the template structure.
Using initial models to refine alignments

An all-againstall structure comparison between all the initial models is used to produce a

sequence alignment based on structural similarity for a given family. This alignment is used in
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Lessons from structure prediction experiments

conjunction with sequence informarion to create a new multiple sequence alignment. which is
compared to the initial set of alignments to check for consistency and make further refinements.

This process is repeated until there is convergence.
Constructing variable side chains and main chains

Multiple side chain conformations for residue positions that differ in type between the template
and target proteins are generated by exploring all the possibilities in a rotamer library [21]. The most
probable conformations based on the interactions of a given conformation with the local main
chain are selected using an allatom distance dependent conditional probability discriminatory

function [22].
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Figure 1: Methodology for comparative modelling. After clustering all sequences, families Devel . b inid
with members that have conformations determined by experiment are candidates for evelopments in our ab Initio

comparaive modelling. Generally, alignments are constructed using one or more publicly  sampling  protocol are also
available methods. Initial models are constructed and structure-based alignments are . .

used in an iterative manner to refine alignments. Non-conserved side chains and main mcorporated mnto  our loop
chains are built using a graph-theoretic approach with sampling provided by exhaustive . :

and database searches. The final conformations are energy minimised to relieve bumps. samplmg techmque.

At CASP experiments, main chain regions and side chains selected for sampling were
determined visually using interactive computer graphics. Some automation to this procedure was
accomplished by developing programs to identify side chains with implausible packing, clashes, and
unfavorable electrostatic interactions with other side chains and/or main chain.

Allatom conditional probability scoring function

The all-atom scoring function forms the core of any algorithm where identification of native-like
conformations is required. The function calculates the probability of a conformation being native-
like given a set of interatomic distances [22]. The conditional probabilities are compiled by counting
frequencies of distances between pairs of atom types in a database of protein structures. All non-
hydrogen atoms are considered, and a residue-specific description of the atoms is used, i.e., the C%o
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of an alanine is different from the C%o of a glycine. This results in a total of 167 atom types. The
distances observed are divided into 1.0 °® A bins ranging from 3.0 ° A to 20.0 ° A. Contacts between
atom types in the 0-3 ° A range are placed in a separate bin, resulting in a total of 18 distance bins.

Distances within a single residue are not included in the counts.

We then compile tables of scores proportional to the negative log conditional probability that
one is observing a native conformation given an interatomic distance for all possible pairs of the
167 atom types for the 18 distance ranges. Given a set of distances in a conformation, the probability
that the conformation represents a “correct” fold is evaluated by summing the scores for all

distances and the corresponding atom pairs.
Using graph theory to generate consistent conformations

We use a graphtheoretic approach to assemble the sampled side chain and main chain
conformations together in a consistent and optimal manner: Each possible conformation of a
residue is represented using the notion of a node in a graph. Each node is given a weight based on
the degree of the interaction between its side chain atoms and the local main chain atoms. The
weights are computed using the all-atom scoring function [22]. Edges are then drawn between pairs
of residues/nodes that are consistent with each other (i.e., clashfree and satisfying geometrical
constraints). The edges are also weighted according to the probability of the interaction between
atoms in the two residues. Once the entire graph is constructed, all the maximal sets of completely
connected nodes (cliques) are found using a cliquefinding algorithm [23]. The cliques with the best
total weights represent the optimal combinations of mixing and matching between the various
possibilities, taking the respective environments into account [24].

Selecting the most nativelike conformations

All models produced are refined using the Energy Calculation and Dynamics (ENCAD) package
[25]. For a given protein sequence, there could be more than one all-atom model produced. For such
cases, all models are ranked using the all-atom pairwise scoring function [22] and the best scoring
models are considered to be the most native-like ones. This approach is generally more effective than

using sequence information alone.
Ab initio prediction

Sequence clusters without known homologues or analogues that are small in size and/or
predicted to have largely helical content are modelled by our ab initio protocol. Such clusters may
be subsequences of larger proteins, in which case they most likely represent domain boundaries [26].
Representative members of the clusters are targets for modelling, and consensus results are used to

assign confidence levels to the models produced.

Our general paradigm for predicting structure involves sampling the conformational space (or
generating “decoys”) such that nativelike conformations are observed, and then selecting them

using a hierarchical filtering technique with many different scoring functions (Figure 2). This
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approach is also among the most competitive at the CASP experiments. The two parts to our
method are designed so they are completely automated and readily extendable to the genomewide
level. Generally, we explore combinations of different representations/move sets with two search
methods for exploring protein conformational space, and combinations of a variety of scoring

function “filters” to identify biologically relevant conformations.
Sampling protein conformational space

We initially start with an all-atom conformation where the torsion values for residues predicted
to be in helix/sheet by secondary structure prediction [27] are set to idealised values. The remaining
0/l values are set in an extended conformation. Side chain conformations are predicted by simply
using the most frequently observed rotamer in a database of protein structures [20]. New
conformations are generated by perturbing the existing conformation at an arbitrary residue by one
of three methods: (i ) the torsion values for three residues with identical sequence from a known
structure are used to modify the current conformation; (i ) one of possible 14 torsion (/1) values
derived based on the most frequently occurring torsion values for a given residue in a database of
known structures; (iii ) one of a possible 14 values based on a virtual coordinate frame where the
C%0-C%o positions of two neighbouring residues are represented by a single virtual bond [28].

The scoring function used for minimisation is primarily a combination of the all-atom function,
a hydrophobic compactness function, and a bad contacts function [29]. The scores of the
conformations are minimised by a combination of two approaches: a straightforward monte
carlo/simulated annealing approach similar in spirit to that of Baker and colleagues [30], and a
genetic algorithm search where trajectories can communicate between each other and exchange

substructures that have low energy (31, 32].

We use different move sets, minimisation techniques and parameters, and scoring functions to
identify the combinations that sample protein conformational space efficiently and effectively. The
methodology development in sampling conformational has impact in comparative modelling for

building variable main chains (which represent small versions of the ab initio problem).
Selecting biologically relevant conformations

The conformations generated are minimised using ENCAD [25] and scored using a combination
of scoring functions that hierarchically reduces the total number of conformations produced to one
or a few final conformations. The scoring functions used for the final filtering include the allatom
function [22], hydrophobic compactness [29], a simple residueresidue contact function [33], a
densityscoring function that is based on the distance of a conformation to all its relatives in the
conformation pool [15], contact order [34], a secondary structure based scoring function that
evaluates the match between the predicted structure and the secondary structure of a final energy-
minimised conformation, and standard physics-based electrostatics and Van der Waals terms [35].

We are in the preliminary stages of investigating linear and nonlinear combinations of these
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Figure 2: Methodology for ab initio prediction. We start with a sequence and generate conformations using three different move sets:
fragments from a database with identical sequence, a 14-state [/€ model, and a 14-state model based on a virtual C%. bond. Many
trajectories are generated and minimised using two differ-ent protocols: monte carlo with simulated annealing and genetic algorithms. The
minimisation function is primarily an all-atom conditional probability discriminatory function, an hydrophobic compactness function, and a
bad contacts function. Once a set of conformations is generated, a hierarchical filtering technique is applied using many different
filters/scoring functions to produce one or a few final conformations.

functions in discriminating native-like folds. Linear combinations of these functions are evaluated
by optimising a leastsquares function that finds the best of weights to achieve the best
discrimination. In addition, we train neural networks on a test set of proteins using the different
functions to determine the relative weights assigned to achieve maximum discrimination. We also
use filters that include the use of experimental restraints such as cross-linking data and analyse
preferences (in terms of volume, radius of gyration and range of scores for each of the scoring
functions above) for certain classes and sizes of proteins to eliminate conformations not appropriate

for that particular class.
Internal testing of our methods during the development phase

We initially run our algorithms on test sets consisting of 30-50 proteins. To minimise bias of a
particular algorithm to a fixed test set, all or portions of the test sets are discarded and replaced with
new ones every six months. For testing accuracy of alignments in comparative modelling, our goal
are to match alignments produced by a structure comparison between the target and template
proteins using only the template structure and the target sequence. In all other cases where a three-
dimensional model must be compared to an experimental structure, we use the root mean square
deviation (RMSD) between corresponding atoms of the prediction and the experimental answer
(usually calculated using the C%o atoms). In addition, we also use a Z-score that estimates the
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number of standard deviations of the RMSD of a particular comparison, relative to an average
comparison [36, 37). The latter metric is more relevant when using models in conjunction with

structure comparison to infer function [38].

SOME RESULTS

Comparative modelling

Table 1 shows a general estimate of how well our comparative modelling prediction methods
have performed at different CASP experiments. Before the first CASP experiment, published results
in the literature usually were obtained by applying structure prediction methods in the context of
the exact experimental structure; for example, rebuilding side chains on the native main chain, or
rebuilding regions of main chain keeping the rest of the experimental structure fixed. (This practice
continues to this day.) CASP1 was an eyeopener in terms of understanding the difficulty of making

accurate predictions on approximate templates [39].

Even though our methods produced mediocre results at CASPI, we realised that a major
problem with accurate comparative modelling had to do with the interconnected nature of protein
structures [40]: If a certain region of the protein varied with respect to the homologue, then it was
likely that a structurally interacting region would also vary, even if that region was conserved in
sequence. We therefore developed a graphtheory based approach to address this problem which
demonstrated significant progress at CASP2 (Table 1) [19). The CASP3 and CASP4 results do not
represent significant improvements over the CASP2 results since the enhancements made to the

graph theory method have been minimal.

Figure 3 shows some examples of the comparative modelling predictions with different
difficulties made at CASP4. In the comparative modelling category, we made 29 predictions for
targets that had sequence identities ranging from 50% to 10% to the nearest related protein with
known structure. For 23 of these proteins, we produced models ranging from 1.0 to 6.0 ° A root
mean square deviation (RMSD) for the C%eo atoms between the model and the corresponding
experimental structure for all or large parts of the protein, with model accuracies scaling fairly
linearly with respect to sequence identity (i.e., the higher the sequence identity, the better the

prediction).

While the graphtheory methods have been fairly successful at handling the interconnectedness
problem to build non-conserved side chains and main chains [19], other major problems preventing
the construction of accurate comparative models have to do with inaccurate alignments and using
the template structure as a static model upon which to build variable main chains. In the former
case, if a region of the alignment is incorrect but is assumed to be correct, then no amount of
further model building will fix this error. In the latter case, the loop and side chain construction
methods, even if interconnectedness is taken into account, are limited by the approximate nature

of the template framework.
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Ab initio prediction

As seen in the comparative modelling category, the first CASP experiments did not live up to
the results previously published in the ab initio field [41, 42]. It was not until CASP3 that the first
consistent positive results were seen: several groups were able to predict the correct topologies for
small proteins, or large fragments of a protein ( Y 60-80 residues to about 6.0 ° A RMSD relative to
the experimental conformation) [43, 44]. CASP4 demonstrated further improvement [14].

Figure 4 illustrates some of our more successful predictions at CASP4 in the ab initio category.
We made eleven predictions for targets that had no detectable sequence relationships. We produced
nine models with accuracies ranging from 4.0 to 6.0 ° A C%o RMSD for 60-100 residue proteins

(or large fragments of a protein).

While these predictions are a significant improvement compared to the previous CASP results,
we still have to make much progress before we can produce models rivalling that of experiment in
accuracy. Given the range of RMSDs sampled for each of the proteins (average range for the 11

Category CASP1 CASP2 CASP3 CASP4
Alignment quality poor fair fair fair
Side chains 50% ¥ 75% Y 75% Y 75%
Short loops { lo 6 aa) ¥3.0°A Y10°A Y1.0°A Y1.0°A
Longer loops (> 6 aa) >50°A ¥3.0°A Y25°A Y1.0°A

Table 1: Qualitative assessment of our comparative modelling methods at CASP experiments. For evaluating side chain predictions, the
percentage of .1 torsion angles predicted within 30” on average is given. For eval-uating variable main chain (loop) predictions, the average
of the C%. root mean square deviation (RMSDs) (calculated using a global superposition of the target and the model) is shown. Tre major
improvement in our methods from CASP1 to CASP2 is from the use of manually-curated alignments and the development of a graph-treory
approach to handle the interconnectedness problem in protein structures.

T128 - 1.0 K (198 aa; 50% 3d)  T111- L7 A (430 ea; 51% 3d) - T122- 2.0 & (241 aa; 33% id)

T2 - 4.4 A {137 any 24% id) TI12- 49 A (348 aa; 24% id)  T92- 5.6 A (104 an; 129 i)

Figure 3: Six examples of our comparative modelling predictions at CASP4 for targets with different diffi-culties. The superpostion of the
model and the experimental structures is shown, along with the C%. RMSD relative to the experimental structure and the percentage identity
of the alignment between the target and template sequences. We made useful predictions for 23 out of 29 targets: sequences with high
percentage identity to the template structures ( L 50%) were modelled well (1-2 > A RMSD) with model accuracy decreas-ing (4-6 ° A
RMSD) fairly finearly as the refationship becomes more tenuous (10-25% sequence identity).
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predictions was 9.3 - 17.6 ° A), it is clear that devising representations that will allow us to explore
protein conformational space such that nearnative conformations are encountered is a major
bottleneck. Our scoring functions generally do pick conformations from the lower end of the
RMSD distribution (usually within the top 1%, and no worse than the 10%, of the conformations

sampled), but further improvements can be made.
Computational times

Table 2 lists the times taken for the computational tasks outlined in this proposal. Times are
given per 1000 MHz Pentium III processor and for a cluster of 64 such processors when the

algorithm can run in parallel.

TEE R0 A O e IR0 T B & (60 s BEHEY T - BB A P e B

T 63 A (7 se; 675 Bhs £ O s S Er TR PNE

Figure 4: Examples of our ab initio predictions. Five of the examples were predictions submitted for CASP4; the sixth (T102/as48) is a
“postdiction” using the actual secondary structure assignment which was available to all CASP predictors (our CASP4 submission for this
target used predicted secondary structure which was only 60% accurate). The experimental structure is on the left and the model is on the
right. We were able to make topologically accurate predictions for 9 out of 11 targets modelled for all or large parts of the protein. Targets
with largely helical content are modelled well, with predictions as accurate as 4.0 ° A C%» RMSD for 80 residues.

Task ¥ Time per CPU ¥ Time for cluster
Comparison of two protein sequences < 1sec -

Clustering of sequence families for 3000 proteins 3 days... 1 day

Initial model building by minimum perturbation < 1sec -

Graph-theory search with 30,000 nodes 24 hours

Refinement of single model using ENCAD for 200 steps < 1sec

Evaluationby afi-atom function for one conformation < 1sec

Generating a three-dimensional conformation < 1sec -

Trajectory of 10,000 steps fo generate one decoy 1 minute -

Generating 10,000 decoys 10000 minutes 3 hours

Table 2: Approximate times for certain calculations outlined in this proposal. Times are shown for a single 1000 MHz processor and for a
cluster of 64 such processors if the algorithms used can run in parallel. ...indicates times can vary based on the quality of the results
desired.

DISCUSSION

We propose to extend our methods to be more complete and rigourous, such that they can be
applied to future blind prediction experiments, modelling proteins of particular interest to biology,

and modelling whole genomes.
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Estimating the reliability of the predictions

Protein structure prediction methods, while promising, are still in their infancy. Therefore, each
prediction is internally annotated and assigned a confidence value. In the case of comparative
modelling targets, the annotation includes the number of templates used, their scores (as ranked by
the all-atom scoring function), and the match between the target and the template proteins (in the
form of PSIBLAST evalues). For ab initio targets, the annotation includes a confidence valued
based on the secondary structure class and the size of the protein, as well as the score of the final
conformation relative to the average score observed for successful predictions with similar secondary
structure class and size. In cases where homologous sequences from the same family are modelled,
the degree of consensus between the different predictions are incorporated into the confidence

assignment.

If given a protein sequence and asked to determine its structure, what can we expect! There will
clearly be failures, even among the models assigned a high confidence value. Overall, based on our
results from the CASP experiment, we can expect > 70 % of the models produced to be useful for
the structure comparison analyses [45] and rational mutagenesis experiments [46] to ascertain
function. A smaller fraction of these will yield higher quality models useful for microenvironment
analyses to assign function [47]. In addition, the modelling techniques developed may yield novel
structural and functional insights for proteins not readily amenable to experimental
characterisation. Thus while not all models will be accurately predicted, useful structural and
functional models using the methodologies described in this proposal can be produced for a large
fraction of the organism’s genome with a relatively low cost, compared to experimental approaches.

Application of structure prediction methods to whole genomes

Analyses of small genomes show that about 30-40% of the proteins within the genome can be
modelled by comparative modelling methods [17, 45, 48, 49]. An additional 20-30% of the
sequences are (or contain) small domains with simple secondary structures that are viable
candidates for ab initio structure prediction [38]. The remaining proteins are usually not amenable
to structure prediction and sometimes even structure determination (a significant fraction of the

latter are membrane proteins).

It is thus possible to construct a “genome prediction engine” using the computational resources
available where we can take the protein sequences encoded by an organism’s genome and attempt
to predict their structures, and use the modelled structures to predict functions. The goal of this
endeavour is to improve existing methods and develop new ones to perform various facets of the

genome/proteome modelling task.

Using predicted structures to predict function

The reason for obtaining structures for proteins encoded by a genome is so that they can be used
to understand function and further our knowledge about the organism’s biology. Even though
structure prediction methods need further development, it is possible to produce models where
functional hypotheses can be tested in a rational manner {for example, with mutagenesis
experiments) through detailed analysis [46]. Additionally, structure comparisons can be used to
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detect functional homology that cannot be detected by sequence information alone [45], and
microenvironment analyses that parse models for particular three-dimensional motifs [47] can be
used to discern molecular function. Both these structure-based approaches, used complementarily
in conjunction with sequenceonly approaches like PROSITE [50] and experimental data, will

enable to us better assign function to all or large parts of a proteome.

Dissemination of information to aid further biological study

The goal of our research is to provide a structural model through computational methods for a
given protein with the intent of applying it to all the proteins encoded by an organism’s genome.
This information will be of greatest value when it is available publicly such that any researcher can

use the annotations we make to guide their own experimental study.

We have created databases of the models generated and placed them on our webserver [51] for
unrestricted download. The software used to create these models is also freely available so that
researchers can make refined predictions of particular proteins of interest. Proteins not modelled by
our software will generally be interesting targets for experimental structure determination, thus
focusing the efforts of Xray crystallographers and NMR spectroscopists in an optimal manner.

Future work

Our primary focus is on improving alignment and template selection techniques (for
comparative modelling methods), and developing methods for moving an approximate
conformation closer to the native structure (for comparative modelling and ab initio methods).
Additionally, the lessons we learn from application of our ab initio methodologies will be

incorporated to better construct non-conserved side chains and main chains.
Template selection and alignment

There are many methods that attempt to handle the alignment and template selection problems
which are still unsolved as judged by the CASP experiments [14, 39, 52]. We propose to try one
radically different approach (graphtheory) and one enhancement (PSTs) on an established approach
(HMMs) with the aim of improving the current state-of-the-art. We will compare the use of HMMs,
PSTs, and the graphtheory based approach for template selection and identification among
themselves and to other approaches published in the literature, keeping in mind that at least one
sequence-only method is necessary for fast application in a genome modelling scenario. The results
produced by the initial application of the sequence-only methods will then be refined by alignment
methods that directly incorporate structural information. In addition, we will combine the all-atom

function with sequence-only metrics to determine if better discrimination can be achieved.

Refinement of nearnative conformations

Remarkably conspicuous at CASP experiments is the fact that there does not exist a method that
can move an approximate conformation closer to the native conformation. The preliminary results
indicate that a significant number of conformations must be sampled before generating one that is

[12
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closer to the native from the starting conformation. We will use two complementary approaches to

address this problem.

In our prior work, we realised that discrimination by the all-atom function could be improved
by performing a linear interpolation between the discrete probabilities [22]. We therefore will
extend our all-atom function to have a continuous form, so that they can be used in an analytical
manner for molecular dynamics and energy minimisation. We will compare the use of Fourier
transforms, cublic splines, and polynomial interpolation to represent the discrete probabilities into

continuous curves.

Complementarily, we will rigourously determine the degree of sampling required to
generate conformations that are closer to the native one, ignoring the issue of selection. We
will also use different representations (14-state models, fragments from a database, and a virtual
C%o representation [28]) to determine which ones are amenable to this type of neighbourhood

sampling.
General relevance of predicting protein structure from sequence

The continually increasing amount of DNA and protein sequence data from genome projects
makes it infeasible for NMR and x-ray crystallography techniques to rapidly provide information
about the 3D structures of all the sequences determined {53]. Thus there is an urgent need for

predicting structure from amino acid sequence.

There are several justifications for developing and improving protein structure prediction
methods: The structure prediction problem is one of the most intellectually challenging
problems in biology. Knowing the structure of a protein sequence enables us to probe the
function of the protein [54, 55, 56, 57, understand substrate and ligand binding [58, 59, 60, 61],
devise intelligent mutagenesis and biochemical protein engineering experiments that
improve specificity and stability [62, 63, 64, 65], perform rational drug design [66, 67], and
design novel proteins [68, 69, 70]. Understanding structure has potential applications in
the various genome projects being undertaken, such as mapping the functions of proteins in
metabolic pathways for whole genomes [71, 72] and deducing evolutionary relationships [73].
Understanding protein structure will allow us to design completely novel folds and functions

with applications in other areas such as nanotechnology and biological computers.

Proteins in a cell do not work in isolation of one another. Thus to understand the function of
multi-protein complexes, or whole proteomes, from a structural viewpoint, it is necessary to have a
model for many proteins encoded by the genome of an organism. The CASP results indicate that
structure prediction methods have matured to a point where they can be applied on a genomewide
scale, and that these structures can be used with novel but straightforward approaches to
understand molecular function [46, 47, 74]. The resulting models when combined with other
genomic/proteomic data, including that from gene expression arrays [75], genomewide two-hybrid
experiments [76], and other proteomics studies [77], will provide us with a dynamic picture of

organismal structure, function, and evolution [78].
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Availability of software and decoys

The ensembles of structures that were generated and much of the software used to generate them

are available at <http://compbio.washington.edu>.
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