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We present a hierarchical method to predict protein tertiary structure
models from sequence. We start with complete enumeration of confor-
mations using a simple tetrahedral lattice model. We then build confor-
mations with increasing detail, and at each step select a subset of
conformations using empirical energy functions with increasing complex-
ity. After enumeration on lattice, we select a subset of low energy confor-
mations using a statistical residue-residue contact energy function, and
generate all-atom models using predicted secondary structure. A com-
bined knowledge-based atomic level energy function is then used to
select subsets of the all-atom models. The ®nal predictions are generated
using a consensus distance geometry procedure. We test the feasibility of
the procedure on a set of 12 small proteins covering a wide range of pro-
tein topologies. A rigorous double-blind test of our method was made
under the auspices of the CASP3 experiment, where we did ab initio
structure predictions for 12 proteins using this approach. The perform-
ance of our methodology at CASP3 is reasonably good and completely
consistent with our initial tests.
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Introduction

Ab initio protein structure prediction remains
one of the most important unsolved problems in
molecular biophysics after 30 years of intensive
research. This problem is in principle solvable: if
we know the exact formulation of the physical
micro-environment within a cell where proteins
fold, we will be able to mimic the folding process
in nature by computing the molecular dynamics
based on our knowledge of the physical laws
(McCarmmon & Harvey, 1987; van Gunsteren,
1998; Duan & Kollman, 1998). Complementarily,
we can rely on the much-debated thermodynamic
hypothesis, i.e. that the native protein structure
is thermodynamically stable and is located at the
global free energy minimum (An®nsen, 1973).
However, we do not yet have a complete under-
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standing of the driving forces behind protein fold-
ing. Perturbations introduced by errors in the
potential energy landscape may possibly result in a
different folding pathway and a different folded
structure. Even if we have an accurate enough
potential energy function, we are still hampered by
the huge search space (Levinthal, 1968).

Novel methods have recently been proposed for
ab initio protein structure prediction with impress-
ive results (Simons et al., 1999; Ortiz et al., 1999;
Osguthorpe, 1999; Lomize et al., 1999; Lee et al.,
1999; Huang et al., 1999; Eyrich et al., 1999). Cur-
rent methods for structure prediction can be
roughly grouped into two categories. The ®rst set
of methods include Monte Carlo and deterministic
energy minimization (Hansmann & Okamoto,
1999; Scheraga, 1996; Levitt & Lifson, 1969) and
genetic algorithms (Pedersen & Moult, 1996),
which generally start from either one or a small set
of random starting points and attempt to drive the
conformation to a low energy in an iterative man-
ner. The major advantage of these methods is that
they more or less mimic the physical process of
protein folding. Besides the folded structure, the
pathway that leads to the folded structure may
also be obtained. However, the success of these
methods depends crucially on the very high
# 2000 Academic Press



172 Hierarchical Construction of Protein Structures
quality of energy function: it not only has to dis-
criminate the native structure from all the other
possible structures along any possible simulation
run, it also has to lead any random starting con-
®guration toward the native structure. It is not
clear whether current energy functions can satisfy
the two requirements simultaneously (Moult,
1997).

The second set of methods use a sampling pro-
cedure to produce trial structures, known as
decoys (Chelvanayagam et al., 1998; Huang et al.,
1999; Park & Levitt, 1996), that are subsequently
evaluated by an energy function. The structure
with the lowest energy is assumed to be the native
structure.

We chose to work within the second paradigm
for the following reasons. First, the prediction pro-
cedure is separated into sampling and selection
processes. Each process is modular and can be
developed and calibrated separately. Ineffective-
ness of the whole procedure can be attributed to
one or both parts that can be corrected as needed.
Second, we ignore pathway prediction and focus
our attention on structure prediction. Protein fold-
ing is a process that involves hundreds of degrees
of freedom. Any single simulation can easily be
trapped in one of many local minima along the
folding pathway, and the chances of overcoming a
local energy minimum decrease exponentially with
the height of the free energy barrier. With the
decoy approach, it is possible to explore millions of
local energy minima of protein conformations in
parallel, thereby sampling the protein confor-
mational space effectively without the need to
overcome high energy barriers. Third, the require-
ments demanded of the energy function have been
signi®cantly reduced: the only requirement is dis-
crimination between near-native and non-native
structures. This allows for the use of powerful
statistical energy functions as discriminatory func-
tions, which may not perform as well as folding
potentials.

Structure sampling and evaluation have con¯ict-
ing needs. We need simpli®ed models to reduce
the dimensionality of the sampling space to make
the computations tractable. At the same time, to
make the best selections, we need structures with
full atomic detail to represent potential energy sur-
face with enough accuracy to allow discrimination
by energy functions. Unfortunately, generating and
evaluating all-atom structures is a time-consuming
process and cannot be done for huge numbers of
conformations.

We tackle this problem by sampling low resol-
ution structures exhaustively, and performing the
®nal selection with a limited, yet promising, set of
all-atom structures. Our approach starts with an
exhaustive enumeration of all possible folds using
a highly simpli®ed tetrahedral lattice model. A set
of ®lters are then applied to these folds, primarily
in the form of discriminatory functions. As the ®l-
ters are applied, we add more detail to the models,
until one ®nal all-atom model remains. Using this
puri®cation scheme, many non-native structures
are pruned out due to high energy even before all-
atom structures are built. Here, we describe our
methodology in detail and provide a comprehen-
sive analysis of its performance.

Results and Discussion

Simplified lattice representation is able to
represent protein conformations well

Table 1 shows the parameters that we used in
the lattice prediction procedure for the 12 test pro-
teins. All the parameters are predetermined and
are only dependent on protein size. Our simple lat-
tice model will only be useful if it can represent
native protein features to a good approximation.
How well can the tetrahedral lattice model rep-
resent native protein structures? To answer this
question, we compute for each test protein the dis-
tance root mean square deviation (dRMS) of the
lattice structure with the highest number of native
contacts (Table 2). This structure will be picked out
if we have a perfect energy function, and is a
measure of how well the lattice can represent pro-
tein structures.

In general, larger proteins are represented less
accurately. However, there is a tremendous degree
of variation: the best dRMS ®t for 1aa2 with 108
residues is less than 3 AÊ , whereas the best dRMS
®t for 1fgp with only 67 residues is slightly larger
at 3.15 AÊ . In most cases, the best dRMS ®t ranges
from 2.4 AÊ to 3.3 AÊ . This shows that our simpli®ed
lattice model is able to represent the full variety of
supersecondary structure topologies that occur in
native proteins. The selection of these best struc-
tures depends entirely on the energy function.

Simplified energy function is able to select
good subsets of lattice models

We use a simple statistical contact energy func-
tion for both threading optimization and selection
of low energy structures. Performance of different
energy functions is characterized by how far the
dRMS distribution of the low energy population is
pushed away from that of all lattice structures
towards native structure. Using energy criteria for
threading and selection pushes the structure popu-
lation towards lower dRMS in all 12 test cases
(Table 2). In the case of protein 1dkt-A, energy
selection improves the mean of the dRMS distri-
bution by 2 AÊ . On average, the dRMS distribution
shifts 0.86 AÊ towards the lower end by applying
energy criteria. A likely reason for the selection
power of our energy function is that the function
we use is complementary to the geometry of the
lattice scheme. Even though our simple lattice
models ignore local geometrical information such
as side-chain orientation and secondary structure,
they have well-formed interiors that can represent
the hydrophobic core of native structures. Since
our energy function captures the dominant hydro-



Table 1. Proteins and parameters used in lattice structure enumeration and selection

Proteina Sizeb Class Walk lengthc Edge size (AÊ )d
Bounding box
vertex counte Rg cutofff

A. Test set
1aa2 108 a 38 5.71 51 1.08
1beo 98 a 38 5.53 51 1.08
1ctf 68 a � b 34 5.08 50 1.10
1dkt-A 72 b 36 5.08 51 1.10
1fca 55 b 28 5.08 50 1.12
1fgp 67 b 34 5.08 50 1.10
1jer 110 b 38 5.75 51 1.08
1nkl 78 a 38 5.12 51 1.08
1pgb 56 a � b 28 5.08 50 1.12
1sro 76 b 38 5.08 51 1.08
1trl-A 62 a 31 5.08 50 1.10
4icb 76 a 38 5.08 51 1.08

B. CASP3 predictionsg

T0043 158 a/b 50/40 5.92/6.37 60/56 1.08/1.14
T0046 119 b 50/40 5.38/5.80 60/56 1.08/1.14
T0052 101 b 50 5.08 60 1.08
T0054 202 a � b 51 6.38 60 1.08
T0056 114 a 50/40 5.31/5.72 60/56 1.08/1.14
T0059 75 b 38 5.08 56 1.14
T0061 89 a 45 5.09 60 1.08
T0063 138 b 50/40 5.66/6.09 60/56 1.08/1.14
T0064 111 a 50/40 5.26/5.67 60/56 1.08/1.14
T0065 57 a 29 5.08 60 1.80
T0074 98 a 49/40 5.08/5.44 60/56 1.08/1.14
T0075 110 a 50/40 5.24/5.65 60/56 1.08/1.14

a The Protein Data Bank (Bernstein et al., 1977) identi®er for the initial test set, and target identi®er for CASP3 predictions.
b For CASP3 proteins, we list the length of the target sequence from which we built our models. In some cases the length of the

target sequence is larger than the protein size with experimentally determined coordinates, shown in Table 3.
c Walk length is half the number of residues for proteins up to size 76. For larger proteins in the test set, walk length is ®xed at

38. For even larger proteins in CASP3, the walk length can be as long as 50.
d Edge size is the distance between adjacent vertices in the lattice. The edge size is chosen such that, on average, the volume per

residue is 100 A3. We have found that this estimate usually gives the best ®t between the most accurate lattice models and their
corresponding native structures.

e Number of vertices within the predetermined elliptical bounding volume. It is dependent on protein size. Here four different
bounding volumes are used.

f Rg cutoff is the upper bound for radius of gyration, relative to that of a sphere with the same volume. Rg cutoff is predetermined
and is solely dependent on protein size; the smaller the protein, the larger Rg cutoff is set.

g For some CASP3 targets, tetrahedral lattice conformations were generated with two different sets of lattice parameters.
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phobic interaction in protein folding, it is able to
discriminate native-like lattice structures with well-
de®ned hydrophobic cores from random struc-
tures, even at very low resolution.

We characterize the overall performance of the
lattice prediction procedure by the dRMS distri-
bution of the low energy subset of all lattice struc-
tures. We show the dRMS distribution statistics for
the 10,000 low energy structure subset for all test
proteins in Table 2. Our lattice prediction pro-
cedure is moderately successful as a purifying step
to concentrate promising structures. There is a
wide spread of dRMS values in the low energy
structure subset, and in many cases near-native
structures are sampled within this small subset.
For example, we are able to sample structures with
dRMS as low as 4.10 AÊ in the 10,000 low energy
subset for protein 1aa2 (108 residues). It is unfortu-
nate that, due to its coarse grained nature, our
energy function is unable to select out one best
structure from the small set of low energy candi-
dates. We, therefore, resort to the detailed structure
construction and selection procedure described
below.
Detailed structure construction and selection

Encouraged by the results of the lattice predic-
tion procedure, we further puri®ed the low energy
subset of lattice structures by constructing all-atom
structures and evaluating them using all-atom
energy functions.

Even though our all-atom energy functions have
previously proven powerful in comparative model-
ling tests (Samudrala & Moult, 1998), they have
not been rigorously tested in an ab initio prediction
scenario. For our selection scheme to work, it is
crucial that the RMS range within which the discri-
minatory function is most sensitive matches the
resolution of decoy structures generated by the lat-
tice prediction method. With this in mind, for each
test protein we generate all-atom models from
10,000 lowest energy structures created by the lat-
tice prediction procedure, and test the performance
of all-atom energy functions on these decoy sets.
Since the lattice prediction generates a pair of
mirror images for each chain con®guration, we
choose the conformation that has lower Ca root
mean square deviation (cRMS) compared with



Table 2. Performance of lattice structure enumeration and selection

PDB code Low energy dRMS (AÊ )a All decoy dRMS (AÊ )b Mean shift (AÊ )d

Best Mean SD Bestc Mean SD

1aa2 4.10 6.06 0.35 2.99 6.79 0.44 0.73
1beo 4.45 6.36 0.48 3.30 7.41 0.47 1.05
1ctf 3.35 5.45 0.45 2.81 6.34 0.44 0.89
1dkt-A 3.90 5.59 0.35 2.86 7.59 0.42 2.00
1fca 3.48 5.16 0.39 2.42 5.65 0.39 0.49
1fgp 4.23 5.98 0.41 3.15 6.62 0.46 0.64
1jer 5.55 7.53 0.41 4.22 8.42 0.39 0.89
1nkl 3.73 5.70 0.42 2.69 6.28 0.43 0.58
1pgb 3.87 5.62 0.39 2.61 6.23 0.39 0.61
1sro 4.67 6.27 0.38 3.11 7.26 0.45 0.99
1trl-A 4.11 5.99 0.48 2.60 6.25 0.51 0.26
4icb 3.58 4.99 0.40 2.76 6.23 0.40 1.24

Average 4.08 5.89 0.41 2.96 6.76 0.43 0.86

Our low detail prediction procedure is moderately successful as a purifying step to concentrate promising structures. In all 12
cases, using energy criteria for threading and selection pushes the structure population towards lower dRMS.

a dRMS distribution statistics (best, mean, and standard deviation) of the 10,000 lowest energy structure subset compared with the
native structure.

b dRMS distribution statistics (best, mean and standard deviation) of all lattice decoy structures compared with the native
structure.

c dRMS of the lattice structure with the highest number of native contacts. This is the structure that would be selected if a perfect
energy function is used.

d Difference in the mean of the dRMS distribution between the complete structure set and the low energy structure set. It mea-
sures how effective selection by an energy function can push the structure population towards lower dRMS compared with the
native structure.
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native structure. This particular choice does not
signi®cantly affect the cRMS range and distri-
bution of the decoy sets, and any discriminatory
function that performs well in our decoy sets is
likely to do well in blind prediction experiments.
This method cannot be used for the CASP3
where we examined the structure and its mirror
image for each decoy, since the experimental
structure is not available.

Secondary structure prediction accuracy

We use the secondary structure prediction pro-
vided by the PHD PredictProtein Server (Rost et al.,
1993) as is, without further tuning of the multiple
sequence alignments or the prediction results. The
summary table (Table 3) reports the three-state
accuracy (Q3) of the secondary structure predic-
tions compared with the DSSP secondary structure
assignments of the native structures (Kabsch &
Sander, 1983). Q3 ranges from 54 % to 97 % for the
test proteins, and is greater than 72 % for ®ve out
of the 12 test proteins. On average, secondary
structure predictions are better for a proteins than
for b proteins.

Secondary structure fitting preserves overall
topology of the lattice conformations

We use a greedy algorithm and a simple four-
state model to incorporate predicted secondary
structure into lattice structures. Figure 1 shows the
cRMS difference distribution between structures
before and after secondary structure ®tting for the
protein 1ctf. This distribution has a peak around
4 AÊ , and a long tail towards large cRMS. Within
our lattice prediction scheme (roughly 6 AÊ cRMS),
this simple ®tting procedure preserves overall top-
ology of lattice structures to a reasonable degree.
The spread of the distribution re¯ects variation in
the extent of agreement between predicted second-
ary structure and lattice structure topology.

Figure 1 also shows the cRMS distribution for
both the lattice structure and all-atom structure sets
compared with the native structure. Our ®tting pro-
cedure preserves the cRMS distribution very well.

Combined energy function is able to achieve
discrimination at low resolution

We tested a variety of different energy functions
on the 12 test decoy sets. Any energy function will
only be useful if it tends to assign lower energy to
near-native structures. To demonstrate this, for
each test decoy set we compute the average energy
Z-scores of the top ten near-native conformations
with lowest cRMS compared with the native struc-
ture. A negative Z-score would indicate that the
energy function is capable of discriminating near-
native structures from other structures. We ®nd
that three energy functions (RAPDF, HCF, Shell)
stand out to give negative Z-score for the majority
of the test proteins. Moreover, a simple combi-
nation of the three normalized energies performs
better than any one of them alone (Table 4 and
Figure 2). Our explanation for this is that the three
energy functions are somewhat complementary:
the HCF function favors compact structures, the
shell function emphasizes long range hydrophobic
interactions, whereas the RAPDF function encodes
all-atom details including local geometry and side-
chain interactions. As a result, combining the three



Table 3. Summary of overall performance for test set and CASP3 predictions

Protein Size Q3a
All cRMS range

(AÊ )b
Best all

cRMS (AÊ )c
Fragment

sized

Prediction
fragment cRMS

(AÊ )d

Best fragment
cRMS sampled

(AÊ )d

A. Initial test set
1aa2e 108 76 6.18-15.28 11.08
1beoe 98 54 6.96-15.94 11.13
1ctf 68 72 5.45-13.54 5.75
1dkt-A 72 72 6.68-14.79 7.80
1fca 55 78 5.09-12.06 5.90
1fgpe 67 66 7.80-14.40 10.93
1jere 110 69 9.55-17.53 13.60
1nkle 78 78 5.26-14.23 5.70
1pgb 56 57 5.60-13.30 8.41
1sroe 76 65 7.30-15.42 9.68
1trl-A 62 97 5.30-13.16 6.35
4icb 76 86 4.74-13.28 4.95

B. CASP3 predictions
T0043 158 70 10.0-19.5 14.5 48 6.3 4.6
T0046 119 67 10.1-19.2 13.9 39 6.6 5.1
T0052 98 50 10.6-16.3 13.6 33 6.6 5.1
T0054f 202 - - 15.5 202 15.5 -
T0056 114 100 6.2-17.8 13.0 60 6.8 3.3
T0059 71 80 7.4-15.7 11.6 46 6.7 5.4
T0061 76 62 6.0-14.0 10.1 66 7.4 5.6
T0063 135 60 10.8-22.0 15.1 35 6.4 4.0
T0064 103 90 8.0-18.8 11.2 68 4.8 4.5
T0065 31 90 2.4-7.6 4.1 31 4.1 2.4
T0074 98 88 6.3-16.5 11.3 60 7.0 4.2
T0075 88 78 6.0-17.0 9.8 77 7.7 5.5

a Percentage accuracy of the PHD three-state (helix, sheet, other) secondary structure prediction.
b The range of cRMS for all the all-atom conformations sampled.
c For each protein in the initial test set, we evaluate the cRMS between the experimental structure and the ®nal model for all resi-

dues. For each target in CASP3 predictions, we evaluate the cRMS between the experimental structure and the best model out of
®ve for all residues.

d For each target in CASP3 predictions, we select a continuous fragment that ®ts the experimental structure best in at least one
of the ®ve models, and compute cRMS between the fragment of the best model and the corresponding part of the experimental
structure. We also compute the best cRMS between any fragment with the same size in the all-atom structures sampled and the
corresponding part of the experimental structure.

e These proteins were targets from the second meeting on the Critical Assessment of protein Structure Prediction methods
(CASP2).

f The experimental coordinates for T0054 were not made available during CASP3. The only data shown here were provided by
the CASP3 organizers.
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energy functions provides a better balance of
different forces responsible for protein folding than
any single energy function alone.

We also use other measures to assess the discri-
minatory power of the combined energy function,
for example, correlation coef®cient between energy
and cRMS, energy rank of near-native structure
with a certain cRMS cutoff, and average cRMS Z-
scores for low energy conformations (Table 5). We
emphasize that even with our best efforts, the com-
bined energy function only achieves moderate suc-
cess in discriminating near-native structures from
other structures.

One consequence of the moderate discriminatory
power of the energy function is that cRMS of the
lowest energy conformation is very noisy. This is
particularly evident in Figure 2(d): a near-native
structure with cRMS of 5.3 AÊ is one of the three
lowest energy conformations, but if we simply
choose the one lowest energy conformation, its
cRMS is almost 11 AÊ away from the native struc-
ture. Since our energy function is noisy and the
three lowest energy conformations have very simi-
lar energy, it is not clear why we should choose
one in favor of the other two conformations. More-
over, the lowest energy conformations share cer-
tain structural features of the native protein,
though they are in many cases overwhelmed by
the high energy of their speci®c non-native parts.
We can enhance this shared structural features
among lowest energy conformations by averaging
the noise out in a proper way, thereby increasing
the chance of ®nding near-native structures,
increasing signal-to-noise ratio and making the
prediction more robust. We use consensus-based
distance geometry to perform proper averaging,
the results of which are described in detail below.

Consensus-based distance geometry improves
distribution of near-native structures

Our consensus-based distance geometry pro-
cedure is a proper averaging procedure over the
set of candidate structures in distance space. Pre-



Figure 1. (a) The cRMS distribution of the decoy set
compared with the native structure of protein 1ctf. Dis-
tributions for two decoy sets are shown: the low energy
lattice structure set before secondary structure ®tting,
and corresponding all-atom structure set after ®tting.
We see that our secondary structure ®tting procedure
does not signi®cantly change the cRMS distribution of
decoy sets compared with the native structure. (b) Dis-
tribution of cRMS between structures before and after
all-atom ®tting for protein 1ctf. This plot shows that sec-
ondary structure ®tting procedure preserves the overall
chain topology of lattice structures.

Figure 2. Energy versus cRMS plot for 10,000 lowest
energy lattice structures of protein 4icb. Four energy
functions are evaluated: RAPDF, HCF, SHELL, and the
combined energy function. Even though the combined
energy function seems to work best, the discriminatory
power is limited for all energy functions tested.
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vious studies have shown that consensus-based
distance geometry procedure can generate a ®nal
structure that is better than one chosen randomly
from a set of promising candidates generated in an
ab initio manner, and even more so with the help
of a more discriminating energy function (Huang
et al., 1998, 1999). We further test this approach on
our decoy sets. We pick out 50, 100, and 500 lowest
energy conformations (as ranked by the combined
energy function) as input to the consensus-based
distance geometry routine that produces one ®nal
structure for each set. Table 6 shows the cRMS of
the output structures from distance geometry pro-
cedure, compared with random selection without
distance geometry. Consensus-based distance geo-
metry improves the concentration of near-native
structures for six out of the 12 test proteins.
In cases where sampling is ineffective, however,
distance geometry does not improve prediction
results, for example, for proteins 1aa2, 1beo, 1fgp,
1jer and 1sro.

The three output structures from consensus-
based distance geometry only have Ca atoms; we
then generate all-atom models for them and choose
the lowest energy conformation as the ®nal selec-
tion according to the RAPDF energy function.

Overall performance of all-atom construction
and selection

Figure 3 shows both the cRMS distribution of
all-atom structure decoy set and the cRMS of the
®nal selection for the 12 test proteins. For nine out
of 12 proteins, we sample the conformational space
adequately to ensure that at least one conformation
representing the native topology is included. For
eight out of 12 proteins, the selection procedure is
able to select out a ®nal structure that is signi®-
cantly better than a random selection from the
decoy set. Overall, for ®ve out of 12 proteins our
®nal selection has the correct native topology and
is roughly 6 AÊ in cRMS compared with the exper-
imental structure. We show six of our best predic-
tions in Figure 4.



Table 4. Performance of different discriminatory functions

Protein RAPDF HCF Shell Combined

1aa2 0.04 ÿ0.10 0.02 ÿ0.02
lbeo 0.02 ÿ0.41 ÿ0.55 ÿ0.52
lctf ÿ0.44 ÿ0.51 ÿ1.01 ÿ1.14
ldkt-A ÿ0.46 0.00 ÿ0.46 ÿ0.52
1fca 0.28 ÿ0.38 0.07 ÿ0.02
1fgp 0.23 ÿ0.86 0.19 ÿ0.23
1jer ÿ0.49 0.38 0.07 ÿ0.03
1nkl 0.02 ÿ0.23 0.10 ÿ0.07
1pgb 0.62 ÿ1.07 0.26 ÿ0.12
1sro 0.02 ÿ1.07 ÿ0.07 ÿ0.63
1trl-A ÿ0.16 ÿ0.50 ÿ0.77 ÿ0.79
4icb ÿ1.69 ÿ0.11 ÿ1.49 ÿ1.80

Average ÿ0.17 ÿ0.40 ÿ0.30 ÿ0.49

This Table shows the average energy Z-scores for the ten lowest cRMS conformations with different discriminatory functions. Z-
score is de®ned as the difference between the energy of the target structure and the average energy over the population, measured
in units of standard deviation. The combined energy function on average has better discriminating power than other energy func-
tions. However, the performance of these energy functions varies greatly depending on the protein.
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We note that the cRMS of the ®nal selection does
not depend strongly with protein size, and we are
able to make successful predictions for proteins
that span a variety of different structural classes
(all-a, a � b, and all-b). However, for large proteins
(1aa2, 1beo, and 1jer) and some all-b proteins, like
1fgp, our procedure fails to select a structure with
native-like topology. This is largely due to the poor
sampling of the initial lattice walks. Indeed, large
all-b proteins are poorly represented by simple lat-
tice models. On the other hand, for the protein
1pgb, all-atom structures with cRMS less than 6 AÊ

are sampled, but our selection procedure was
unable to select them out.

Our predictions can tolerate relatively large
errors in secondary structure predictions in terms
of both sampling and ®nal selection. For instance,
we are able to sample structures with 5.6 AÊ cRMS
for protein 1pgb even though the secondary struc-
ture prediction accuracy (Q3) is only 57 %; and our
Table 5. Performance of combined energy function (RAPDF �
Protein top 50a top 100a top 50

1aa2 0.06 0.11 ÿ0.01
1beo ÿ0.45 ÿ0.25 ÿ0.10
1ctf ÿ0.73 ÿ0.49 ÿ0.33
1dkt-A ÿ0.56 ÿ0.44 ÿ0.33
1fca ÿ0.22 ÿ0.34 ÿ0.20
1fgp ÿ0.23 ÿ0.26 ÿ0.16
1jer ÿ0.23 ÿ0.25 ÿ0.16
1nkl 0.05 0.02 0.01
1pgb ÿ0.43 ÿ0.53 ÿ0.32
1sro ÿ0.48 ÿ0.43 ÿ0.35
1trl-A ÿ0.26 ÿ0.16 ÿ0.26
4icb ÿ0.71 ÿ0.62 ÿ0.44

Our combined energy function only achieves moderate success
Since cRMS of the lowest energy conformation is very noisy, cons
predicted structure.

a Average cRMS Z-scores for top 50, 100, and 500 lowest energy c
b Native-like cRMS cutoff.
c Energy rank of best native-like structure using the combined ene
d Correlation coef®cient between cRMS and energy for the whole p
prediction for protein 1ctf has a cRMS of 5.75 AÊ

when Q3 is 72 %. This is because we only use sec-
ondary structure information to generate all-atom
models based on existing lattice structure topolo-
gies that are generated without secondary structure
information. As a result, the cRMS distribution of
low energy structures will not change much even
when the secondary structure prediction error is
large.

Ab initio prediction on CASP3 targets

Encouraged by these test results, we decided to
participate in the CASP3 experiment, where our
method was tested against target proteins in a
double blind manner. We made ab initio predic-
tions for 13 targets for the CASP3 experiment.
Twelve out of the 13 predictions were made by the
combined approach described here. CASP3 targets
are in general larger than proteins in the test case,
HCF � Shell)

0a cRMS (AÊ )b rankc c.c.d

8.64 7 0.01
9.11 7 0.02
5.76 33 0.19
6.97 3 0.15
6.05 10 0.06
8.90 13 0.09
10.80 17 0.06
8.01 21 0.07
7.31 3 0.11
9.10 27 0.14
5.97 23 0.14
5.33 3 0.18

in discriminating near-native structures from other structures.
ensus-based distance geometry is employed to obtain the ®nal

onformations.

rgy function.
opulation (10,000 structures).



Figure 3. cRMS distribution of the sampled all-atom structures and the ®nal selection for the 12 test proteins. For
each protein, the population of 10,000 all-atom structures that we constructed from low energy lattice structures are
shown by a box. Within the box, the distribution of cRMS for this structure population is represented by a shaded
density bar, where the density of the shading at a given cRMS is proportional to the fraction of conformations pre-
sent. The thick vertical bar indicates the cRMS of our ®nal structure. We observe that we generally have better selec-
tion when the sampling is better (i.e. has more low cRMS structures).
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and the prediction protocol was slightly modi®ed
to accommodate this change. For each target, up to
40,000 all-atom structures were sampled. We sub-
mitted up to ®ve models for evaluation for each
target. For six proteins, we are able to predict
models that capture the global topology for large
or all parts of the sequence. A summary of our pre-
diction results is shown in Table 3. Four of the best
non-trivial predictions are shown in Figure 5.
Results of the individual performance of the meth-
Table 6. Performance of the distance geometry procedure

Protein Randoma SDb

1aa2 12.09 1.05
1beo 12.01 1.33
1ctf 9.20 1.29
1dkt-A 10.98 1.20
1fca 9.00 1.11
1fgp 11.16 0.92
1jer 13.79 1.17
1nkl 10.13 1.25
1pgb 9.45 1.21
1sro 11.42 1.08
1trl-A 8.62 1.17
4icb 8.78 1.63

In half the cases, consensus-based distance geometry procedure i
more native-like than a structure chosen at random.

a cRMS between the native structure and a structure chosen rando
b SD is the standard deviation associated with the above (a).
c cRMS between the native structure and the structure produced b

energy conformations.
od on each target was published in the CASP3 pro-
ceedings (Samudrala et al., 1999). Here, as with the
initial test set, we comprehensively analyze the
performance within the framework of our hierarch-
ical methodology. Our results at CASP3 represent
a marked progress in ab initio prediction relative to
what was achieved at CASP1 and CASP2.

The performance of our method at CASP3 is
consistent with the previous tests. Both results fol-
low the same trend: a proteins are easier to predict,
Top 50c Top 100c Top 500c

13.51 11.08 11.36
11.54 11.50 11.14
5.79 6.32 6.94
7.81 9.28 9.22
8.21 7.99 5.93
10.93 11.52 11.36
14.16 13.57 15.31
5.70 9.66 8.71
8.42 8.77 9.49
9.68 9.88 12.47
6.36 7.83 7.83
8.95 9.67 4.95

s able to generate one structure out of three trials that is much

mly from 500 lowest energy conformations.

y distance geometry procedure from top 50, 100, and 500 lowest



Figure 4. Native structures (left)
and our ®nal structures (right) for
the following test proteins: 4icb,
1nkl, 1ctf, 1fca, 1trl-A, and 1dkt-A.
The structures are colored accord-
ing to sequence order (from the N
terminus, blue, to C terminus, red).
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and all-b proteins are hardest to predict. The
sampling ef®ciency is similar in both cases: we are
able to sample native-like all-atom structures for
nine out of 12 test proteins, compared with
for six out of 12 CASP3 targets. In both cases the
®nal selection is typically 6-7 AÊ cRMS for 60 to 70
residues.

The performance of our method is comparable
to other best methods at CASP3. We made six pre-
dictions out of the 11 medium and hard targets
selected by the CASP3 assessors. Five of these pre-
dictions are among the ®ve best of all groups
judged by various fragment analyses (Orengo et al.,
1999). It is hard to make precise comparisons
because the methods that performed well at
CASP3 are very different from one another. For
example, two methods use known sequence and
structure information that is dependent on the spe-
ci®cs of current databases (Simons et al., 1999;
Ortiz et al., 1999), and one method constructs ter-
tiary structures by manually docking secondary
structure elements (Lomize et al., 1999). Our meth-
od is generally automated and does not rely on
additional database information other than for
creating the multiple sequence alignments used for
the secondary structure predictions and for compil-
ing the knowledge-based energy functions. How-
ever, the method is fairly tolerant of secondary
structure prediction accuracy, and is not very sen-
sitive to the speci®cs of the database of known
structures. Comprehensive reviews on the CASP3
performances can be found elsewhere (Orengo
et al., 1999; Koehl & Levitt, 1999).

Computation times

For small proteins less than 80 residues, the com-
putation time for each protein is roughly three
CPU days on a 533 MHz alpha processor for the
entire process. For the larger proteins in CASP3
experiments, the computation time is about one
week. Our procedure can be trivially made to run
in a massively parallel manner.

Advantages of this approach

Our method is relatively insensitive to the details
of current protein sequence and structure data-
bases. We only use these databases to compile
knowledge-based energy functions and perform
secondary structure predictions. Our prediction
results are likely to be better on speci®c proteins
by incorporating additional constraints derived
from experiments or other statistical analysis per-
formed on the data.

Our method is also tolerant with respect to
errors in secondary structure prediction. Because
we start with a complete low resolution enumer-
ation, we are able to sample all chain topologies
within a certain resolution and the prediction



Figure 5. More successful CASP3
prediction results. Experimental
structures (left) and our best pre-
dictions (right) for the following
targets are shown: T0059, T0061,
T0064, and T0075. For each target,
we color according to sequence
order the major fragment that gives
best cRMS agreement between pre-
dicted and experimental confor-
mations (T59: 25-70; T61: 4-69; T64:
1-68; T75: 27-103). Other parts of
the structures are light gray.
Additional results are shown in
Table 3.
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results are consistent over a wide range of protein
folds.

Since our method decouples the complicated
problem of protein structure prediction into small
independent parts, we are able to evaluate and
improve the performance of each part indepen-
dently. Even though the speci®cs need to be much
improved, we feel that the general paradigm
employed in our approach, i.e. proceeding from
low to high detail, from decoy generation to evalu-
ation, and ®nally producing one conformation
from many promising candidates, will remain use-
ful in the design of better ab initio methods. We
show that the discriminating power of all-atom
knowledge-based energy functions extends beyond
comparative modelling and threading to the ab
initio folding scenario. We emphasize the import-
ance of building all-atom conformations; simpli®ed
models have a very distorted energy surface that it
is unlikely to consistently select one near-native
structure from a decoy set for a wide range of
proteins.

Our study also highlights the general applica-
bility of consensus distance geometry method as
an effective way to generate one ®nal conformation
from a set of promising candidates. We feel that it
is an integral part of our approach to deal with the
noise in the energy functions. We note that
methods with similar philosophy have also been
proposed by other recent ab initio studies, for
example selecting structures with greatest number
of neighbors (Simons et al., 1997) and clustering of
structures (Eyrich et al., 1999).

Limitations of this approach

Our approach can predict to an accuracy of
about 6-7 AÊ in cRMS for protein fragments of up
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to 80 residues, and is not restricted to particular
structural classes. However, it fails for proteins
with complicated supersecondary structure topolo-
gies. Sampling appears to be the bottleneck of our
approach: the low resolution of the lattice model
ultimately limits the sampling quality, thus putting
an upper limit on the predictive power of this
approach.

Our procedure generates protein models with
low resolution. Such rough models are not very
likely to be useful for functional studies in general
(Wei et al., 1999). However, when treated with
caution and combined with experimental studies,
our models may provide insights for further exper-
iments in speci®c cases (Samudrala et al., 2000a).

Directions for future work

Our prediction results can be improved by using
predicted tertiary contacts (Ortiz et al., 1998) and
more accurate secondary structure predictions
(Jones, 1999; http://globin.bio.warwick.ac.uk/
psipred). In a more fundamental way, we need to
overcome the sampling limit of the lattice model.
This can be achieved by replacing the lattice model
by knowledge-based off-lattice models, and repla-
cing exhaustive enumeration by Monte Carlo mini-
mization (Simons et al., 1997).

Another area of improvement is the energy func-
tion. Knowledge-based energy functions have out-
performed physical energy functions in many
discriminatory tests. However, some promising
physical energy functions have recently been pro-
posed with discriminatory power comparable to
knowledge-based energy functions, and with the
advantage of clear underlying physics (Lazaridis &
Karplus, 1999). Further testing is required to ®nd
the optimal energy function that works best for ab
initio prediction.

We hope ultimately to generate better decoy sets
that can fool the best energy functions and better
energy functions that can discriminate the hardest
decoy sets. We believe that this is the most power-
ful way to approach realistic ab initio protein struc-
ture prediction.

Methods

Overview

A typical ¯ow chart of our procedure for protein ter-
tiary structure prediction is shown in Figure 6. We
describe the individual components of our combined
hierarchical approach in detail below.

Lattice enumeration and selection

We represent the simpli®ed chain topology of protein
structure as a self-avoiding walk on a tetrahedral lattice.
A full description of the methodology is given elsewhere
(Hinds & Levitt, 1992, 1994). For small proteins with no
more than 76 residues, we choose a walk length such
that on average each vertex represents two residues. For
larger proteins, we ®x the walk length to an upper limit
of 38 vertices. Lattice spacing between vertices is scaled
based on the mean Ca-Ca distance obtained from a data-
base of protein conformations. We also construct prede-
®ned elliptical bounding volumes. To ensure diversity of
the lattice walks, these bounding volumes contain 20 %
to 50 % more vertices than will be used by any particular
structure.

We exhaustively enumerate all possible bounded lat-
tice walks and pick out walks that are reasonably com-
pact judged by a radius of gyration of no more than 1.14
times that of a sphere with the same volume. The criteria
of compactness is also prede®ned: we allow less compact
structures for short lattice walks because small proteins
tend to be more irregular in shape. The total number of
such compact lattice structures depends on the chain
length but is never more than twenty million.

Since there are more residues than vertices, we thread
the residues into every lattice walk using an iterative
dynamic programming method that quickly converges
to a locally optimal arrangement: no more than three
residues are positioned between each pair of lattice
points along the walk and each lattice point is occupied
by a speci®c residue. After threading optimization, we
calculate the energy for each lattice walk and the subset
of structures with lowest energies are then selected for
subsequent all-atom analysis.

The energy function we use is a residue-residue con-
tact function. We count residue-residue contacts in a lat-
tice structure in such a way that the total numbers of
long-range contacts in lattice and actual structures are
approximately the same. Contact energy parameters are
derived from pairwise amino acid contact frequencies in
a database of experimentally determined structures as:

euv � ÿkT ln

X
p

Cuvp

X
p

Cp

Tp
Tuvp

�1�

where euv is the effective energy of a contact between
amino acid types u and v, and p varies over all proteins
in the database. For each protein p, Cp is the number of
tertiary contacts, Cuvp is the number of u-v contacts, Tp is
the total number of possible tertiary contacts, and Tuvp is
the total number of possible u-v tertiary contacts. A ter-
tiary contact is de®ned between two residues wherever a
non-hydrogen atom of one residue approaches within
4.5 AÊ of a non-hydrogen atom of the other residue, and
the two residues are at least ®ve sequence positions
away from one another.

Secondary structure prediction

We use the PHD PredictProtein Server (http://
www.embl-heidelberg.de) (Rost et al., 1993) to predict
secondary structures of the sequences to be modeled. No
manual adjustment was made to the predictions. We
assign helix or sheet conformation to those residues with
high con®dence prediction from the PHD server (>5),
and do not impose secondary structures on any other
residues.

Secondary structure fitting and all-atom
structure generation

The lattice structures from our simple lattice predic-
tion only capture the overall chain topology and comple-
tely lack secondary structure and side-chain detail. We



Figure 6. Flowchart of our pro-
tein structure prediction procedure
illustrated by a real example (4icb).
Structures with Ca atoms only are
shown in gray, whereas all-atom
structures are shown in color.
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use a greedy chain growth algorithm and a four-state
off-lattice model to generate all-atom structures that clo-
sely resemble the chain topology of the lattice structure
templates, while at the same time having the predicted
secondary structure and side-chain detail.

We specify the main-chain conformation for each resi-
due by a four-state (f, c) model that has been shown to
represent protein structures well (Park & Levitt, 1995).
The four states have (f, c) equal to (ÿ57, ÿ47) for helix,
(ÿ129, 124) for sheet, (ÿ36, 108) and (108, ÿ36) for two
different turn conformations. Each residue with a high
con®dence secondary structure prediction is set to ideal-
ized helix or sheet conformation as described by the
four-state model. For other residues we allow for all four
conformations. Starting from the N terminus of the pro-
tein, we ®rst enumerate all possible conformations for
the ®rst ten non-®xed residues using the four-state
model, then select the 600 best conformations with low-
est cRMS relative to the corresponding Ca atoms of the
lattice structure. At each iteration, we add an additional
residue in all four possible conformations at the C termi-
nus of each of the 600 candidate fragments, and then
again select the 600 best conformations. This is repeated
until the entire lattice model is ®tted.

All bond lengths and bond angles are ®xed at ideal-
ized values. We build up side-chain conformations with
w angles ®xed to those that are most frequently observed
in a database of protein native structures. This has been
shown to work surprisingly well for near-native tem-
plate structures (Samudrala et al., 2000b).

Energy minimization procedures

All-atom structures after secondary structure and side-
chain ®tting are minimized for 200 steps using ENCAD
(Levitt & Lifson, 1969; Levitt, 1974; Levitt et al., 1995).

Energy functions for all-atom models

We evaluate all-atom structures by a combination of
three energy functions: (1) an all-atom distance-depen-
dent conditional probability discriminatory function
(RAPDF); (2) a hydrophobic compactness function
(HCF); and (3) a residue-residue contact function (Shell).
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We ®rst normalize the energies of each function respect-
ively, and then combine all three energies with equal
weights.

Residue-specific all-atom probability discriminatory
function (RAPDF)

RAPDF is an all-atom distance dependent knowledge-
based energy function that indicates the probability of a
conformation being native-like given a set of inter-atomic
distances (Samudrala & Moult, 1998). We use a set of
312 unique folds from the SCOP database (Hubbard et al.,
1997) to compile the RAPDF energy function. We divide
all non-hydrogen atoms into a total of 167 residue-
speci®c atom types. We divide distances into a total of
18 distance bins: 1 AÊ bins from 3 AÊ to 20 AÊ , and one sep-
arate bin for the 0-3 AÊ range. The energy eab for a par-
ticular pair of atom types, a and b, is computed thus:

eab � ÿ ln
N�dab�=�dN�dab�

�abN�dab�=�d�abN�dab� �2�

where N(dab) is the number of observations of atom
types a and b in a particular distance bin d in the data-
base of experimental protein structures, �d is summation
over all distance bins d, and �ab is summation over all
pairs of atom types a and b.

The total RAPDF energy, evaluated by summing the
energies for all distances and corresponding atom pairs,
represents the negative log conditional probability that
we are observing a native conformation. A complete
description of RAPDF can be found elsewhere
(Samudrala & Moult, 1998).

Hydrophobic compactness function (HCF)

Hydrophobic compactness function (HCF) measures
the compactness of a structure. It is calculated using the
following formula:

HCF � �i��xi ÿ �x�2 � �yi ÿ �y�2 � �zi ÿ �z�2�
N

�3�

where N is the number of carbon atoms in the protein,
and x, y, z are the Cartesian coordinates of the carbon
atoms.

Residue-residue contact function (Shell)

The shell energy function (Park et al., 1997) is a pair-
wise residue contact function. Two residues are said to
be in contact if their interaction centers, located 3 AÊ from
the Ca atom along the Ca-Ca vector, are within 7 AÊ . The
total energy for a conformation is then the sum of con-
tact energies for all residue pairs that are in contact. The
contact energy euv for residue types u and v is computed
in a similar way to the energy function that we use for
selecting lattice structures:

euv � ÿkT ln

X
p

Cuvp

X
p

Cp

Tp
Tuvp

�4�

where for each protein p, Cuvp is the number of contact
counts for residue types u, and v, Cp is the total number
of contacts, and Tuvp is the number of residue pairs of
type u and v separated by at least two residues in
sequence. Tp, the total number of possible tertiary con-
tacts, is calculated in the following way:

Tp � �Np ÿ 2��Np ÿ 1�=2 �5�
where Np is the number of residues for protein p.

Consensus-based distance geometry

We use consensus-based distance geometry to pro-
duce a single Cartesian structure from a set of lowest
energy conformations. Restraints for metric matrix dis-
tance geometry are taken directly from the lowest energy
conformation sets by measuring and storing inter-Ca dis-
tance in 1 AÊ bins. The upper and lower bounds for each
distance are determined by a jury process. Each distance
receive a weight equal to the Boltzmann weight of the
structure from which it was measured, i.e.:

wi � exp�ÿEi=kT�
�i exp�ÿEi=kT� �6�

where Ei is the energy for the ith structure in the lowest
energy set, and kT is set to 10. In the jury process, the
distance bin that received the most weighted votes was
used to set the upper and lower bounds for a given Ca-
Ca distance.

Distance geometry calculations are performed using
the program distgeom from the TINKER suite (http://
dasher.wustl.edu/tinker/) to compute a single Cartesian
structure consistent with the most frequently observed
Ca-Ca distances in the lowest energy subset of confor-
mations. The generated structure is re®ned via 10,000
steps of simulated annealing against a set of penalty
functions to enforce local geometry, chirality, excluded
volume, and the input distance restraints. Additional
details can be found elsewhere (Huang et al., 1998;
Samudrala et al., 1999).

Structure comparison

In our study of lattice prediction, we compare struc-
tures using the rmsd of corresponding Ca-Ca distances
(dRMS) (Cohen & Sternberg, 1980). Our lattice enumer-
ation procedure only generates low resolution Ca struc-
tures with no secondary structure or side-chain
information, and our energy function is based entirely
on distance. As a result, the lattice prediction procedure
does not discriminate between a structure and its mirror
image. dRMS, which is based on distance and also does
not discriminate between mirror images, is therefore a
good measure of the performance of our lattice predic-
tion procedure.

For our subsequent study of all-atom prediction, the
symmetry in supersecondary structure level is broken
due to handedness of secondary structure elements and
side-chain conformations, hence mirror image lattice
structures are readily discernible by the all-atom energy
function. To evaluate the performance of our all-atom
prediction procedure, we use the more familiar cRMS of
two structures with best superposition (McLachlan,
1971).

Selection of test proteins

We select as a test set 12 small globular proteins with
less than 110 residues representing different fold classes
(Table 1). We choose half of these proteins from targets
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for the CASP2 meeting because they represent more rea-
listic test cases. Test proteins were not used in compi-
lation of the energy functions, i.e. our procedure is
properly jack-knifed.

Differences in the CASP3 strategy

Target proteins in the CASP3 experiment were gener-
ally larger than our test proteins. For these larger pro-
teins, we used a longer walk length of 50 within a
bounded volume that contains 60 vertices, and only con-
sidered compact conformations with relative radius of
gyration no larger than 1.08. To account for possible
non-globular shapes, we also prepared another set of lat-
tice models using walk length of 40 within a bounded
volume that contains 56 vertices, and considered confor-
mations with relative radius of gyration up to 1.14
(Table 1). Subsequently we sampled all compact lattice
structures exhaustively, the total number of which is
more than two billion for one protein. Each low energy
conformation generated by our lattice prediction pro-
cedure is a pair of mirror images, and all-atom structures
were generated for both of them. The resulting all-atom
decoy set contains up to 40,000 structures for each target.

For secondary structure prediction, instead of taking
the prediction result from PHD server alone, we gener-
ated 20 multiple sequence alignments of a homologous
set of sequences to the target protein with a bootstrap-
ping procedure, and used them as input for three sec-
ondary structure prediction methods: PHD (Rost et al.,
1993), DSC (Ross & Sternberg, 1996), and Predator
(Frishman, 1995). The consensus of the 20 predictions for
each method was taken as the ®nal prediction.
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