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Abstract: The development of an energy or scoring function for
protein structure prediction is greatly enhanced by testing the func-
tion on a set of computer-generated conformations~decoys! to
determine whether it can readily distinguish native-like conforma-
tions from nonnative ones. We have created “Decoys ‘R’ Us,” a
database containing many such sets of conformations, to provide a
resource that allows scoring functions to be improved.
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What are decoys: Predicting the structure of protein using the
amino acid sequence information alone is one of the fundamental
unsolved problems in computational molecular biology~Richards,
1991!. Any algorithm that attempts to predict protein structure
requires a scoring or discriminatory function that can distinguish
between correct and incorrect conformations. A major issue in
developing any discriminatory function for work with proteins is
deciding how to test its performance.

We introduce a database, Decoys ‘R’Us^http:00dd.stanford.edu&,
that contains a wide variety of decoys generated by different meth-
ods with the aim of fooling scoring functions. Decoys are computer-
generated conformations of protein sequences that possess some
characteristics of native proteins, but are not biologically real.
Decoys have been based on discrete-state models~Park & Levitt,
1996!, molecular dynamics trajectories~Wang et al., 1995; Huang
et al., 1996!, crystal structures of different resolutions~Subrama-
niam et al., 1996!, conformations with different loops~Samudrala
& Moult, 1998!, and amino acid sequences mounted on radically
different folds~Novotny et al., 1984; Holm & Sander, 1992!.

World Wide Web sites have been established to provide decoy
test sets for fold recognition functions^http:00fold.doe-mbi.ucla.edu&
and for general protein structure prediction functions^http:00
prostar.carb.nist.gov&. These sites are useful because most func-
tions generally are tested on only one or two types of decoy because
generation of decoy sets is a time-consuming task. Using only a

few types of decoy, discrimination may be achieved by some spe-
cific artifacts of the decoys, such as noncompactness or systematic
distortion of detailed features like hydrogen bond length~Park
et al., 1997; Samudrala & Moult, 1998!. Multiple decoy sets are
essential to not only measure the “orthogonality”~i.e., the ability
to succeed on many different sets! between a discriminatory func-
tion and a method for generating decoys, but also the “comple-
mentarity” between a method for exploring the conformational
space of proteins and a given scoring function.

It is difficult to generate high-quality decoy sets that can readily
fool discriminatory functions. Because the Web has been useful for
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Fig. 1. Ca RMSD vs. score for 653 decoys of Calbindin~Protein Data
Bank code 3icb! from the 4state_reduced decoy set. The scores are calcu-
lated using an all-atom distance-dependent conditional probability discrim-
inatory function~Samudrala & Moult, 1998!. The RMSD for the lowest
scoring structure~circled! is 1.63 Å, and the log10 odds of picking out this
conformation by chance is21.40~ p5 0.04!. The correlation coefficient of
the score and RMSD is 0.84. The zero RMSD structure is the experimental
conformation~boxed!, which is shown here for informative purposes; in a
bona fide prediction scenario this conformation is not likely to be seen in
the sample space. Similar results are observed with this function for all the
proteins in the 4state_reduced set. This example, although idealized, indi-
cates that if a method that can sample the conformational space in an ab
initio manner to produce the distribution of RMSDs depicted is available,
then the function is able to select conformations around 2.0 Å RMSD.
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testing scoring functions, and because many decoy sets generated
by us and other research groups already exist, a wide variety of
decoys have been placed on the Decoys ‘R’ Us Web site, with the
hope of aiding developers of scoring functions in finding challeng-
ing tests for their work. The goal of this effort is to present sets of
decoys in a readily available and usable manner, complementing
the other existing efforts in this area. The focus is on diversity and
volume-collecting data for many different proteins, and providing
a large number of decoys per protein so that a giving scoring
function can be tested exhaustively. Data sets generated in an ab
initio manner by different search algorithms are also provided

~e.g., the lattice_ssfit decoy set!. A scoring function that does well
in these types of sets will most likely do well in a blind bona fide
prediction scenario, such as the one provided by the Critical As-
sessment of Protein Structure Prediction Methods~CASP! confer-
ence, which in turn, can lead to elucidation of function using a
combination of theory and experiment based on predicted structure
~Wei et al., 1999; Samudrala et al., 2000!.

How are decoys used:How does one evaluate the performance of
a scoring function in a manner that enables different scoring func-

Fig. 2. Performance of our discriminatory function on four different decoy sets. The distribution of Ca RMSDs for each protein in each
of the decoy sets is represented by a shaded density bar, where the density of the shading at a given RMSD range~horizontal axis! is
an indicator of the fraction of conformations present. The thick bar indicates the RMSD of conformation selected by our scoring
function. The inset image shows how the density bar maps to the fraction of conformations for a given RMSD range. The scoring
function we use performs well across a variety of decoy sets, doing worst in the case of the lmds decoy set and doing best when there
are clear native-like conformations present~4state_reduced decoy set!.
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tions to be compared to each other between different decoy sets?
For decoy sets with one correct and one incorrect conformation,
we use two primary measures: the percentage~or fraction! of cases
where the correct0experimental conformation has a better score
than the incorrect conformation~the higher the percentage, the
better the discrimination!, and the discrimination ratio between the
score of the incorrect conformation and the correct conformation,
averaged over all correct0incorrect pairs in the particular set.

For decoy sets with one correct and many incorrect conforma-
tions, we begin by plotting the score vs. the root-mean-square
deviation~RMSD! of the Ca atoms between the native conforma-
tion and each decoy. An example of this is illustrated in Figure 1
using an all-atom distance-dependent conditional probability dis-
criminatory function~Samudrala & Moult, 1998!, one of the many
scoring functions that have been published in the literature. The
RMSD of the lowest scoring conformation~excluding the exper-
imental structure! is one measure of how well the function per-
forms, but this is an extremely noisy quality. One can also estimate
the probability of selecting the conformation by chance~RMSD
rank of the conformation0divided by the total number of confor-
mations!. This is also a noisy estimate. A reasonably robust mea-
sure we have found to work in practice is the correlation coefficient
of the RMSDs and the scores, because it incorporates information
about all the conformations produced by a particular decoy-
generation method~Fig. 1!.

We have also developed a new method for examining the discrim-
inatory power of a scoring function within the distribution of con-
formations in a graphical manner using the gel-like plots in Figure 2.
This allows us to both qualitatively and quantitatively assess the per-
formance of a scoring function for a large number of different types
of decoy sets at a glance. In these plots, not only is the final selection
information present, but the distribution of conformations is repre-
sented by shading density. This allows us to visualize and compare
the performance of a function across many decoy sets.

For example, from Figure 2 we can glean that the discriminatory
function we use for our simulations performs fairly well across a
wide variety of decoys. However, in certain cases such as for the
1fc2 protein in the fisa decoy set, even though the selection of
4.480 Å RMSD seems reasonable, it is actually a poor one as it falls
to the right of the mean of the distribution, which has a lower RMSD.
Likewise, the function does not always succeed on the lmds decoy
set even though in some cases near-native conformations are present
in the set with reasonably high density. We note that it performs con-
sistently well when very native-like conformations are present in
the set, as is the case with the 4state_reduced set.

Utility of Decoys ‘R’ Us and future plans: The Decoys ‘R’ Us
database has been available in preliminary form for about a year.
During that time, a number of groups have made use of these
decoys in published and unpublished works, using them to evalu-
ate and improve scoring function performance for predicting struc-
ture ~Samudrala et al., 1999; Simons et al., 1999a, 1999b! to
elucidate the physical nature of protein–protein interactions
~Lazaridis & Karplus, 1999!, and to assess the degree to which
biologically relevant functional sites are preserved in predicted

structures~Wei et al., 1999!. In addition, there are over 50 unique
downloads of at least one decoy set each month.

Besides maintaining the database and adding more decoys as
scoring functions start performing better on these decoys, we also
will have software that can test the ability of a scoring function to
drive a conformation toward the native structure. A suite of pro-
grams will be made available that will help create decoy sets using
some of the methods described above for different proteins and
evaluating them using different scoring functions. A preliminary
version of this set of programs is available at^http:00www.ram.org0
computing0ramp0&. Programs to visualize the decoy set data and
discriminatory function performance will also be made available.
Finally, this database will also serve to validate sampling efforts by
different methods by collecting conformations produced in a bona
fide manner~i.e., “blind prediction”! by those methods.

A detailed description of the organization of the database and
the format of the conformations, examples of decoys, and usage
guidelines is available on the Decoys ‘R’ Us Web site:^http:00dd.
stanford.edu&.
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