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1. INTRODUCTION

The native conformation of a protein is generally assumed to be the one with

the lowest free energy [1].  The successful prediction of protein structure depends on

the surmounting of three sub-problems:  (1) choosing a representation of protein

conformation that includes structures similar to the correct conformation but limits

the search space; (2) formulating a scoring function that relates a particular protein

conformation to its free energy;  and (3) devising a method to combine the first two

elements in a search through conformational space for the state with the globally

optimum score.  These three requirements apply to the major classes of protein

structure  prediction: homology modeling, threading (fold recognition), and ab

initio folding.  In this chapter we focus on the second of the three sub-problems, that

of developing energy functions, and place an emphasis on functions tailored for ab

initio folding, although much of the discussion will also apply to threading.

The form of a scoring function is dependent on the particular type of problem

to be tackled.  For instance, in homology modeling, the backbone (or fold) of the

target protein is assumed to be known, as it is derived from a related protein with

known structure.   A suitable function computes the total score for interactions

between pairs of side-chains and side-chains with the backbone, to build side-chain

conformations.  However, in threading and ab initio folding, one is primarily

concerned with capturing the overall fold, or topology, of the backbone.  For

example, consider an ab initio folding scenario in which one starts with a fully

extended polypeptide backbone and attempts to fold it with respect to some scoring

function.  In order to make the search problem more tractable by reducing the

degrees of freedom afforded to the protein, side-chain atoms are often reduced to a

single coordinate [2], thereby decreasing the computational overhead; likewise, the

applicable scoring functions are reduced in complexity.  Threading techniques also

use these simplified  functions to score the alignment of probe sequences mounted
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upon structures and sub-structures found in the protein data bank (PDB) [3].  Such

functions are suitable because the original side-chain conformations of the template

are discarded when a probe sequence replaces the identity of the residues.

Obviously, simplified functions cannot be rooted in the same physical

principles as the all-atom functions used for the molecular simulation of proteins

which require the explicit positions of all the atoms in the protein [4, 5, 6, 7].

Parameters for these potential energy functions, or force fields, are obtained from

experimental data and quantum mechanical calculations.  In contrast, most of the

scoring functions used in protein structure prediction fall into the category of

knowledge-based potentials of mean force [8, 9]. The term “knowledge-based” refers

to the statistical analysis of the properties found within the database of

experimentally-determined protein structures.  Knowledge-based functions mine

the information-rich protein database by converting properties seen native proteins

into “pseudo-energies” that reflect the compatibility of a given sequence with a

structure.  A wealth of properties of native structures is readily extracted, for

instance the pairwise interaction of residues, the exposure of non-polar groups to

solvent, the propensity of sequences to form secondary structure, and the close

packing of protein atoms [10, 11, 12, 13].  The choice of  the property is at the

discretion of the modeller; hence, a knowledge-based function can be derived using

a range of fold representations, from a string of secondary structure assignments to a

full-atom representation.  While simplified scoring functions are typically

knowledge-based, the converse is not true.

Knowledge-based energy functions are not without problems in their

theoretical justification [14, 15, 16, 17, 18, 19, 20].  Although the details of this

discussion are beyond the scope of this chapter, the main points are presented here.

First, knowledge-based functions derive their parameter sets from experimental

data, typically by applying the inverse Boltzmann law to the observed properties in
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the protein database:

    
∆E = −kT ln f1

f 2







where the energy difference ∆E between two states is related to the ratio of their

occupancies (f1 and f2); T  is the temperature (°K) and k  is the Boltzmann constant. f1

is the frequency of observations of a certain type in the database, and f2 is the

number of observations expected by chance (defined by the chosen reference state,

see below).

At least four assumptions underlie the application of the inverse Boltzmann

law in this fashion: (1) the set of known stable folds of different proteins are

representative of proteins in general; (2) the protein set represents a system at

equilibrium; (3) the observed frequencies are independent of each other and their

environment; and (4) the observed frequencies are distributed according to the

Boltzmann law.

However, Thomas & Dill have shown that inter-residue interactions are not

independent [17].  Rather, the result of a dominating hydrophobic effect is to

influence the types of interactions that polar residues make, simply because each

structure can only make a limited number of inter-residue contacts.  For example,

the extracted parameters for charged residues do not mainly reflect electrostatic

interactions; charged residues are driven to the protein surface by the non-polar

interactions, coupled by chain connectivity and excluded volume effects.  Also,

Kocher et al.  argue that since protein folding is cooperative, inter-residue

interactions cannot be independent [14].  Finally, Thomas & Dill have shown that

the size of the proteins used to compile the parameters can also skew the extracted

scores [17].

 To circumvent the need for the assumptions surrounding the conversion of

database statistics to true energies, some methods rely instead on the Bayesian
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formalism (i.e. conditional probabilities) to formulate a scoring function [21, 22]. The

two formalisms are analogous and follow the same methodology in practice.  We

therefore refer to all the knowledge-based functions discussed in this chapter as

“scoring” or “objective” functions.

Given that there are a multitude of scoring functions designed for protein

structure prediction by threading and ab initio folding, it is important to understand

how they work.  In the next section, we will provide examples from work conducted

in our laboratory, and in the literature. We will dissect out the essential components

of scoring functions for ab initio folding, and compare and contrast the similarities

and differences among them.  Our intent is not to do an comprehensive review [8, 9,

16, 23, 24] but to stereotype the different components of the various scoring

functions and explain their specific roles.

 Ab initio folding methods can be largely placed into two main categories: fold

generation by exhaustive enumeration or by minimization.  Each of these classes

can further be sub-divided  into lattice and off-lattice (torsion-based) approaches.

We will look at an example of each of these four sub-types of ab initio folding

methods.  Threading functions will not be discussed explicitly, but many

knowledge-based functions used in ab initio folding can be directly applied to

evaluating sequence-structure compatibility in a threading context [10, 12, 13, 25].

However, successful threading or fold recognition is by no means limited to the

knowledge-based functions described in this chapter.  Many excellent alternatives

exist, including methods that use environmental profiles [11], predicted secondary

structure [26, 27, 28], and multiple sequence alignment [29].

2. METHODS

2.1. General issues

Although all of the scoring functions discussed below were developed and

tested for ab initio folding, some are exclusively knowledge-based.  Some do not rely
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on the database of known structures, but model forces such as the hydrophobic

effect,  and hydrogen bonding. A few others combine the two approaches.  For the

knowledge-based functions, we will discuss some general procedural issues.

2.1.1. Selection of a database

The standard procedure for constructing a fold library to compile a scoring

function is to choose a non-redundant set of proteins that reflect all known folds.

One way to do this is to require that no two proteins in the set share more than 30%

sequence identity.  Undesired bias can arise from over-representing proteins of a

certain size or topology (for instance, alpha-helical proteins), and thus a balanced

mixture of proteins with different secondary structures must be used.  The set

should also be as large as possible to make the observed statistics robust.

2.1.2. Jack-knifing

Development and validation of a scoring function must proceed without

specific knowledge of the target protein.  A true threading or ab initio experiment

would be carried out only in the absence of a template structure with suitably high

sequence similarity (otherwise the problem shifts from fold recognition / generation

to homology modelling!).  Thus, validation of a given scoring function for use in

threading or ab initio folding must ensure that no inadvertant use of information

occurs.  One commonly employed technique is that of “jack-knifing.”  Consider the

case where parameters for a scoring function is extracted from a database of 300

proteins.  Presumably the parameters reflect the tendencies of native proteins in

general with respect to some property of interest (for instance, frequencies of

pairwise contacts), but in reality the parameters will be biased in some degree

towards the 300 proteins.  In practice, this implies that one cannot validate the

scoring function on a test set of proteins that includes any of the proteins used to

compile the parameters (or any related proteins thereof).  Furthermore, training or

optimizing a scoring function with respect to performance on a fixed test set,
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whether the database was previously jack-knifed or not, is tantamount to

introducing knowledge of the test set.

2.1.3. Correction for sparse data

If one is extracting many properties from the database, the problem of sparse

data arises.  Sippl [10] suggests the following correction for the observed frequency of

sequence s  in structural state c:

    
ρ ' s ,c = 1

σ + ms
σρc + msρs ,c( )

where ms  is the number of occurrences sequence s  appears in the database and ρs,c

is the unadjusted frequency that sequence s  appears in structural state c.  The

effective sequence-dependent frequency ρ’s,c is equal to a combination of the

sequence-independent frequency ρc  and the actual number of sequence-dependent

occurrences of structural state c.  The adjustable parameter σ sets the relative weight

of the sequence-independent term (chosen as 50 in [30]).  This correction for sparse

data is most commonly employed when one is generating potentials of mean force

in at various sequence separations (see section 2.2.2).

2.1.4. Choice of a reference state

Knowledge-based scoring functions express their “pseudo-energies” relative

to a reference state.  For example, a reference state might represent a system in

which the actual interaction energy between residue pairs equals zero; i.e., a system

exhibiting the contact frequencies of a randomly interacting system.  This state may

or may not include explicit solvent molecules, the presence of which dramatically

affects the resulting effective energy of interaction between two residues.  Since

there are many ways to formulate a reference state [20], this issue will be

individually addressed where applicable.

2.2. Exhaustive enumeration methods

2.2.1. A lattice model

In the studies by Hinds & Levitt [31, 32], all possible conformations of a
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sequence were generated, subject to the bounds, spacing, and geometry of the lattice.

The knowledge-based scoring functions used by the study had the following

functional form:

  
E = eij

contacts
∑

where eij is the contact score between residues types i  and j and the total score E  is

the sum of all pairwise scores observed in the lattice structure.  These so-called

contact functions typically are square-welled, i.e. the interaction between a pair of

residues is value eij if the residues are within a cutoff distance (6 to 8 Å is customary)

and zero otherwise.

The parameters for the 210 values for eij (i.e., in a 20x20 symmetrical matrix)

are calculated as

 
  
eij =

Nij
obs

Nij
exp

where   Nij
obs is the number of observed contacts between residue types i  and j. In the

selected database and   Nij
exp is the number of contacts made in the reference state, or

  
Nij

exp = Cp
p

∑
Tijp

Tp

where p  is a protein in the database, Tp is the total number of possible tertiary

contacts, and Cp is the number of actual tertiary contacts.  The total number of

contacts Tp is a simple function of the total number of residues in protein p, Np:

    Tp = Np − 4( ) Np − 5( )
Tp is not exactly equal to     Np

2 because interactions between nearest neighbors along

the sequence (|i-j| < 5) are disregarded.  Tijp is equal to the number of i and j pairs

that are not nearest neighbors in the sequence.  The ratio Tijp/Tp is effectively the

product of the concentrations of i and j.  Contacts in the database are counted

whenever a heavy atom of one residue is within 4.5 Å of a heavy atom of another

residue.

This technique of recovering effective contact energies from the database is
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also referred to as the “quasi-chemical approach” [2, 20]. Briefly, this approximation

treats the interacting centers (e.g. residues) as disconnected units that interact

randomly and whose expected (or reference) contact frequency is proportional to

their relative concentrations.  This particular method uses a reference state with the

compactness and packing patterns of native proteins.

The goal of exhaustive ab initio methods is achieved when the fold closest to

the native structure corresponds to the global energy minimum.  If there is more

than one fold that resembles the native fold to within some RMS or DME cutoff,

then ideally that subset of folds has better scores than all the other, non-native folds.

The tetrahedral lattice of Hinds & Levitt is a coarse lattice in that it is only able

to generate walks suggestive of the overall native trace [31, 32].  On the other hand,

this lattice can support exhaustive enumeration of most small proteins.   The

number of total walks is therefore very large (on the order of 107).  Hinds & Levitt

[31] did not report the rank of the nearest-native fold in the ensemble, but they note

that out of the lowest-energy 103 to 104 folds, there are on the order of 10 native-like

folds (4 to 5Å DME).

2.2.2. An off-lattice model

Next, we examine the four-state off-lattice model of Park & Levitt [30, 33]. By

using only four states in Ramachandran space, one can reproduce the native fold to

about 2 Å RMS error.  Unfortunately, exhaustive enumeration of a small protein

(100 residues) implies 4100, or 1060 conformations, which is intractably large.

However, if one enforces idealized native secondary structure (i.e., one state each to

represent α and β states), allowing only 10 selected loop and turn residues to assume

the four possible (φ, ψ) possibilities, then one only needs to contend with 410 folds

(about a million).  After applying a generic compactness filter, only ~200,000

structures remain.  One may think of this fold ensemble as the set of all possible

arrangements of native secondary structure.
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As in the case of Hinds and Levitt [31, 32], for a given set of conformations

there were many (on the order of 102) near-native folds  (≤ 4 Å RMS deviation from

the native structure) present.  Park et al. [34] evaluated a series of scoring functions

by computing a Z-score (defined as the number of standard deviations a particular

score departs from the mean score in the set) for each near-native fold.  The best

functions had the most negative average Z-scores for the near-native folds (a Z-score

≥ 0 means that the function did not discriminate better than random for that

structure).  Table 1 lists some of representative functions and their average Z-scores

for 8 small proteins.  Park et al. [34] also reported that for many functions, one of the

near-native folds would rank very high in the score-sorted list.  For instance, the

Shell function placed a near-native fold within the top 100 of every fold ensemble

for 8 different proteins (corresponding to the top 0.1 to 1% of a score-scored list).

However, many non-native folds were also among the lowest-scoring

conformations in each set, even though the near-native folds overall were favored.

In other words, none of the simplified knowledge-based functions could identify

near-native folds without also including some non-native folds.
Table 1: Performance of four selected energy functions.
Four energy functions described by Park et al. [34] are tested on eight semi-exhaustive off-lattice
decoy sets.  The average Z-score for the near-native folds (those within 4 Å RMS error of the native
fold) is shown for each function.

Function <Z-score>

Histogram -1 .27
Shell -1 .78
Contact(MJ)  0.03
HF -1 .51

The Shell function, the top performer out of our representative set of four

functions is a simple contact function.  Whenever a pair of residues that is more

than one residue apart in the sequence is within 7 Å, a score eij is counted.  Nearest

neighbors in the sequence are ignored simply because they are always in close spatial

proximity with each other, and hence should not contribute to the signal.  Residues
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are reduced to a single “interacting center” (or virtual centroid) 3 Å from the Cα

atom along the Cα-Cβ vector.

The 210 parameters eij are computed essentially in the same manner as

described in 2.2.1, in that a compact, randomly mixed reference state is employed.

Two subtle differences are:

1. The Shell function counts residues in contact (both in the database and in the set

of ab initio folds) when their virtual centroid positions are within 7 Å of each other.

2. The value of Tp for the Shell function reflects the smaller sequence separation

cutoff for interacting residues (only |i-j| < 2 are ignored).

The Histogram function is an implementation of the Sippl [10] potential of

mean force (PMF).  Unlike contact functions, which typically apply the quasi-

chemical approximation in an explicit reference state, a PMF uses an implicit

reference state (see below).  The potential of mean force W between two interacting

centers (e.g. residues) i and j is defined as:

    
W ij (r) = −kT ln

ρij
obs(r)
ρ(r)








where ρij is the observed probability density that residues i and j are at distance r.

The reference state is a hypothetical state for the polypeptide that reflects the

observed inter-residue distances of the database with sequence information

removed.  As inthe case for contact functions via the quasi-chemical approximation,

the energy parameters are extracted from the observed amino acid distributions in a

subset of the PDB.  This function is named the Histogram function because it relates

the energy of interaction as a function of observed inter-residue distances (calculated

as the distance between the Cβ atoms).  Hence, instead of recovering 210 pairwise

contact parameters for the 20 amino acids, 210 histograms are generated.  Each

histogram reflects the relative frequency of inter-residue distances sampled at 20

uniformly spaced intervals.  Furthermore, the classic implementation of the Sippl
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function [10] involves modeling the role of local and long-ranged pairwise

interactions by generating separate histograms for pairs of residues at a given

separation along the polypeptide chain (called a topological level).

In the Park & Levitt [30] implementation of the PMF described by Sippl [10].,

ten histograms for each of the residue-pair interactions were generated in the

following manner: 8 for local interactions with sequence separation 3 through 10,

inclusive; 1 for medium range interactions (sequence separation 11 through 50,

inclusive); and 1 for all other, long-range interactions.

Spatial distance bins were computed for each histogram by storing the

minimum and maximum distances and dividing the range into 20 equal distance

bins.  The correction for sparse data was applied (section 2.1.3).  If there is no sample

in a particular bin, its occurrence was re-set to one to prevent the computed energy

from going to infinity.  Fortunately, these slots correspond to geometries that are

very unlikely in real proteins.

The last of the three knowledge-based functions is called the Contact(MJ)

function.  This function differs from the Histogram and Shell functions in one key

respect: the reference state is a random mixture of solvent and amino acids, which

directly models the effect of desolvation in protein folding.  A quasi-chemical

reaction between two amino acids i and j in solvent can be expressed as:

i-0 + j-0 ⇔i-j + 0-0

where 0 represents a solvent molecule.  The effective energy of desolvation and

contact formation eij is determined by separate terms for the effective energy of

breaking the i-0 and j-0 interactions and forming i-j and 0-0:

    eij = e' ij +e'00 −e' i0 −e' j0

Each energy parameter e’ is determined by the same equation used in the Shell

energy function.
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The effects of introducing solvation-dependent energies e’i0, e’j0, and e’00

include:

1. Desolvation energies that are more favorable for polar and charged residues than

hydrophobic residues.

2. The introduction of a favorable solvent interaction term, e’00, which causes all the

energy terms to be more favorable (more negative) by a constant.

Each of the e’ terms  is computed  separately using the equation above [31, 32].

To extract the parameters, the following are required:

1. Each residue type i has an average coordination number qi, estimated by scanning

the database of known structures for buried residues of type i.  When qi is greater

than the number of inter-residue contacts made by a particular residue i, then the

difference is set to the number of contacts between residue i and solvent.

2. The number of solvent molecules is a free parameter equal to twice the number of

residues in the protein [30].

3. The total number of contacts in the system is equal to Tp plus the number of

solvent contacts, which is set to the number of solvent molecules times its

coordination number.  The coordination of water was set to the the average residue

coordination number.

4. The total number of solvent-solvent contacts is equal to the number of solvent

contacts minus the total number of residue-solvent contacts.

The hydrophobic fitness (HF) function [35] is unusual in that it derives no

parameters from the PDB.  Instead, it simply rewards favorable arrangements of

hydrophobic and polar residues.  A conformation is scored favorably if hydrophobic

residues (of any type) make more contacts with other hydrophobic residues than

would be expected on average.  The overall score is weighted by a term that rewards

the burial of hydrophobic residues.  The form of the HF function is:
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HF = − Bi

i
∑





Hi − Hi
°( ) 

i
∑





where i is hydrophobic {C, F, I, L, M, V, W}; Bi is the number of virtual side-chain

centroids within 10 Å; Hi is the number of hydrophobic residues (plus Y) with 7.3 Å.

  Hi
° is the expected number of hydrophobic contacts based on a random distribution

of the other residues surrounding residue i, disregarding the nearest neighbors in

the sequence.   Hi
° is computed by multiplying the fraction of hydrophobic residues

with the number of contacts residue i makes.

2.3. Minimization methods

Scoring functions take on different forms when structure prediction is

attempted on a lattice by minimization protocols.  When one is not concerned with

exhaustive enumeration, a finer lattice may be used, thereby improving the accuracy

to which a native fold may be represented.  The trade-off is that one can never be

sure that the best fold can be found by minimization, either because of imperfections

in the energy function, search strategy, or both.

Unlike scoring functions used in exhaustive methods, a scoring function

used in minimization must bear the additional burden of favoring generic features

of native states, namely secondary structures and compactness.  Exhaustive methods

can enforce compactness simply by setting the bounds of a lattice or by simply

discarding structures that do not satisfy a radius of gyration cutoff.  In contrast,

minimization starts with a random or extended state, and compactness must be

monitored by at least one component of the scoring function.  The problem of

secondary structure formation may  be surmounted by imposing native secondary

structure assignments.  Otherwise, a combinatorial explosion in the search process is

averted by biased sampling of conformational space [21] or by ad hoc terms in the

energy function favoring secondary structure formation (for instance, via hydrogen

bonding).  The implementation of these terms are typically specific to a given
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structural representation (e.g., lattice models with a certain geometry and spacing),

so we will not discuss the functional forms or parameter derivation at length unless

they are illustrative of general issues.

2.3.1. Minimization on a lattice

In the study by Kolinski & Skolnick [36], a dual lattice model was used for

folding by optimization of a scoring function.  In their scheme, a coarse lattice was

used for the early stages of folding from an expanded state, and refinement of the

initial structures was performed on a finer lattice.  The entire scoring function is

written as

    E = ECα + EH −bond + Erot + Esg− local + Eone + Epair + Etem

and can be divided into three components: sequence-independent terms, sequence-

dependent local and long-range terms, and multi-body side-chain interactions.

    ECα  and   EH −bond  are the two sequence-independent terms.      ECα  acts as an

effective Ramachandran potential.  Every i, i+3 inter-Cα distance and its

corresponding chirality (defined by the three intervening virtual Cα-Cα bonds) are

compared with those extracted from the PDB.  The resulting energy term enforces

local geometries that favor secondary structure formation.  The second generic term,

  EH −bond , models H-bond formation based on pairs of Cα-Cα vertices that are 4 or more

residues apart in the sequence.  A hydrogen bond between Cα vertices i and j must

satisfy the following geometrical restrictions:

      

(bi−1 − bi ) • r ij ≤ amax

(b j−1 − b j ) • r ij ≤ amax

where b is a backbone vector, rij is the vector between the Cα positions, and amax is a

parameter set by the lattice spacing.  A H-bonding cooperativity term rewards the

formation of hydrogen-bond networks by adding to   EH −bond  subtotal a separate score

when consecutive sets of residues i,j and i±1, j±1 are hydrogen-bonded.

For sequence specific energy terms, a simplified representation of side-chain
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rotamers (a single interaction center) was used.  The energy of a given rotamer was

simply tied to the frequency of that rotamer in the library (  Erot ).  The angle θ between

two consecutive Cα-side-chain vectors was computed and scored as

    
Esg− local = − ln cosθ obs

cosθ exp






where the expected occurrence assumes a uniform distribution of states.    Esg− local

refers to the local interaction of side-groups (or side-chains).

The long range interactions include a one-body term (  Eone ) and a pair

potential (  Epair).  The former is designed to drive hydrophobic residues into the

interior of a folded chain.  This term is designed to penalize extended states and

addresses a central need of all minimization methods to drive the collapse of a

polypeptide chain.  This single-body term takes on two forms, one that is related to

the position of a given residue from the center of mass of the polypeptide chain and

a second that considers the number of contacts it makes relative to the average

number for that residue in the database.  The pair potential has a repulsive term

that chases steric clash between side-chains and other side-chains and the main-

chain and a statistically-derived scoring function similar to those described

elsewhere in this chapter.  The cutoff distances for repulsion and pairwise

interaction are dependent on the residues involved.  The strength of attraction is

modulated by a factor f that reflects the average backbone orientation of the

secondary structures:

      f = 1.0 − cos2(ui ,u j ) − cos2(20°)[ ]2

where ui=ri+2-ri-2 with ri being the position of the ith Cα vertex.  The maximum of

this function occurs at 20° and the minimum at 90°.

Finally, the multibody term   Etemwas added to simulate the cooperativity of

side-chain packing from a molten state to a more native-like state.  The authors note

that in the absence of this term, the folds have the character of molten globules, i.e.
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with well-defined secondary structure but more expanded than close-packed tertiary

structures. The multibody term assumes the following form:

    Etem = (eij + ei+k , j+n )Cij × Ci+k , j+n

where Cij = 1 when residues i and j are in contact and residue spacing |k| = |n|; k

and n assume values of {±3, ±4}.

The relative strength of each of these contributions was set by requiring that

secondary structure be more prevalent in the collapsed states than in unfolded

conformations.

Starting from a random configuration on the coarse lattice, folding was

attempted for three small proteins [37].  In the interest of conciseness, we focus on

the folding of Protein A, in many ways the most successful experiment of the three.

The 60-residue fragment of this protein adopts a three-helical bundle topology.

Folding of this protein was carried out 45 times using a simulated annealing

protocol on the coarser lattice.  In 19 trials the correct three-helical conformation was

seen, in another 11 trials, a three-helical bundle of incorrect topology persisted.

Overall, the average conformational energy of the correct folds was lower than that

of the incorrect folds, and the reproducibility of the non-native folds was much

lower than for the native-like folds.  Further refinement of 5 near-native folds upon

the finer lattice yielded structures in the 2-3 Å RMS error range (excluding the

residues at the N and C termini).

It should be noted that evaluation of a scoring function per se in

minimization experiments is difficult because the observed performance is

dependent on the search strategy as well as the function used.  Generally speaking,

the best methods available today can provide native-like folds in a significant

fraction of the folding trials, as was the case for Protein A summarized above.

However, successful convergence to a native-like fold is still limited to a handful of

proteins.
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2.3.2. Folding in torsion space

For our example for minimization in torsion space, we choose the work by

Dill and co-workers [38].  As with many ab initio methods, the authors rely on the

constraint of native secondary structure in order to overcome the vast

conformational search problem.  Unlike the exhaustive enumeration strategy of

Park & Levitt [30], this minimization method has large dihedral library with which

to place the rigid secondary structure elements.  As a first step, the conformational

search is powered by a genetic algorithm [39] that operates on a string of paired (φ, ψ)

dihedral angles.  A second step then refines the search by choosing a random

adjustable residue and changing the torsion angles incrementally to probe the local

energy surface for minima.  The protein chain is reduced to a backbone with ideal

bonds and angles and trans peptide conformations, and side-chains are represented

by a virtual atom centered at the average rotamer observed in the PDB.

The scoring function of Sun, et al. [38] could afford to be much simpler than

the one described above.  Since native secondary structure was already in place, the

energy terms favoring secondary structure formation were rendered unnecessary.

In fact, their scoring function is surprisingly simple, as it relies mostly on

hydrophobic interactions balanced by steric repulsion:

  ETotal = EHH + Eex

where   EHH  is an attractive interaction between hydrophobic residues {A, C, I, L, M, F,

W, Y, V}.  The magnitude of the attraction is distance-dependent, but the functional

form is an analytical expression rather than a database derivation like the Histogram

function (section 2.2.2).  The expression is:

    
EHH = eij f (dij )

j> i+1
∑

i
∑

where eij is -1 if and only if i and j are hydrophobic residues and zero otherwise and

dij is the distance between side-chain centroids of residues i and j. The coefficient f

modulates the attraction by the following sigmoidal function:
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f (dij ) = 1.0

1.0 + e(dij −d0 ) dt

dt is a parameter that sets the sharpness of the sigmoidal function (set to 2.5 Å) and

d0 sets the interaction distance (6.5 Å) as the midpoint of the curve.  The attraction is

set to zero at 12 Å.

The excluded volume term is also a sigmoidal function between pairs of Cα

atoms or side-chain centroids:

    
Eex = C × 1.0

1.0 + e(dij −deff ) dw
ij
∑

where dw is 0.1 Å and deff is 3.6 Å for Cα atoms and 3.2 Å for side-chain centroids.

The constant C sets the scale for the repulsive term higher relative to the attractive

term.

To aid the formation of β-sheets during the folding process, a score of -1.0 for

hydrogen bonding between beta-strands was added for every instance when certain

geometical conditions were met (O-H distance < 2.5Å and N-H-O angle between 120°

and 180°).

The method was tested on 10 small proteins.  Of these, four of the lowest-

scoring models were within 4 Å RMS error.  The authors did not report the scores of

the most native-like folds the representation could allow in terms of RMS error, but

8 of the native structures had scores less favorable than the structures found by the

genetic algorithm.

2.4. Extending knowledge-based functions to the atomic level

Regardless of the initial fold representation used, protein structures are most

useful when detailed atomic coordinates are known.  While simplified scoring

functions are capable of distinguishing near-natives from non-natives a significant

fraction of the time, they will not work as well in situations where subtle differences

between different conformations exist.  To capture the finer details of atom-atom

interactions in protein, such as interactions between side chain atoms and the rest of
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protein, a more detailed representation is necessary.  For example, in a situation

where two conformations are quite similar to the experimental structures (within 1-

3 Å RMS error for the Cα atoms), we need all the information we can possibly obtain

from the two conformations to determine which one is more accurate.  A one-

point-per-residue scoring function may not be able to discriminate as well as an all-

atom discriminatory function, which takes into account the environment of all the

atoms of the main and the side chain of each residue.

The all-atom probability discrimination function (PDF) as formulated by

Samudrala & Moult [22] is similar to potential of mean force by Sippl [10], but the

formulation is in Bayesian terms, and there is greater detail in the representation.

167 different atom types are used. Scores for interactions between pairs of atoms for

all 167x167 possible pairs and for 18 distance ranges (0..3,3-4,4-5,...,19-20 Å) are

compiled using the expression:

    
s dab|C( ) =

− ln P dab|C( )
P dab( )

s(dab|C) is  the conditional probability of observing two atoms a and b interacting at

a distance d in a correct/native conformation C.     P dab|C( ) is the probability of seeing

atom types a and b in distance bin d in a correct conformation and is calculated by:

    

P dab|C( ) =
N dab( )

N dab( )
d

∑

  P dab( ) is the probability of seeing atom types a and b in the distance d in any

conformation, correct or incorrect:

    

P dab( ) =
N(dab )

ab
∑

N(dab )
ab
∑

d
∑

N(dab)  is the number of occurrences of a,b pairs in distance bin d.

A scoring function S  proportional to the negative log conditional probability

of conformation being correct is used to calculate the total score of a conformation,
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given a set of i,j interatomic distances:

    
S dab

ij{ }( ) = s dab|C( )
ij
∑

The PDF described above avoids sparse data problems by not separating local

and non-local interactions.  While this leads to an averaging of the two sorts of

environments in the parameters for the scoring function, it does not appears to

diminish predictive ability [22].

The reference state dab is in Bayesian terms referred to as a "prior

distribution."  In this case, the prior distribution is that found in the set of possible

compact conformations, with the assumption that averaging over different atom

types in experimental conformations is an adequate representation of the random

arrangements of these atom types in any compact conformation.

Samudrala & Moult [22] have shown that discrimination between native and

non-native folds deteriorates as the detail in fold representation is reduced.  To

illustrate that point here, we run a detailed all-atom scoring function that takes into

account interactions between all 167 pairs of atoms, and another function that uses

only Cβ-Cβ interactions, for two sets of protein structure conformations.  The first is

a set of 269 conformations of 434 repressor (PDB entry 1r69) ranging in RMS

deviation (RMSD) from 0.95 to 14.95 Å. The second is a set of "deliberately misfolded

structures" created by Holm and Sander [40].  In the latter case, 26 "misfolded

conformations" are created by placing the sequences of the proteins on completely

different structures of identical length, and then energy minimizing them to make

them look as protein-like as possible.  These misfolded conformations range from

8.66 to 22.43 Å RMSD with respect to the corresponding native structures.

Table 2 gives the results for the two types of scoring function for 1r69 set of

conformations, and Table 3 gives the results for the two types of functions for the

misfolded decoy set.
Table 2:  Comparison of the all-atom and scoring Cβ -Cβ  functions for a set of 269
conformations of 434 repressor (PDB entry 1r69).  For each function, the root-mean-square
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deviation (RMSD) of the best scoring conformation, the correlation between the scores and the RMSD of
the conformation with that score, and Z score, using two different cutoffs to identify near-natives, is
given.  The detailed all-atom function performs slightly better than the Cβ-Cβ scoring function.

RMSD of best scoring
structure

correlation between
score and RMSD

Z score (1 & 2 Å
cutoff)

All-atom 1.67 Å 0.80 -1 .75 / -1 .42
Cβ-Cβ 1.80 Å 0.63 -1 .65 / -1 .32

Table 3:  Comparison of the all-atom and Cβ-Cβ scoring functions for a set of 26 deliberately misfolded
structures.  For each function, the percentage of structures correctly discriminated and the average
discrimination ratio (score of the incorrect conformation divided by the score of the correct
conformation; the lower the ratio, the better the discrimination) is given.  The all-atom function
performs significantly better than the Cβ-Cβ function.

% of structures correctly
discriminated

Average discrimination ratio

All-atom 100% 0.38
Cβ-Cβ 77% 0.66

Even though in the case of the 1r69 decoy set, the Cβ-Cβ scoring function does

quite well, the best scoring conformation selected by the all-atom function is slightly

lower in RMS error, and there is a better correlation between the score of the

conformation and the RMS error to the native conformation.  The Z score for the

single conformation below 1.0 Å and the 27 conformations below 2 Å  is also slightly

better in case of the all-atom function.

Given the results in Table 2, it might seem better to use a reduced

representation to speed up the calculation of the fitness of a conformation, since the

detailed representation is only slightly better.  When we examine the results in

Table 3, we see that for the 26 misfolded structures, the all-atom function is able to

identify all the 26 misfolded conformations as being incorrect, with a significant

degree of discrimination (the ratio is the score of the incorrect conformation divided

by the score of the correct conformation; the lower the ratio, the greater the

discrimination).  However, the Cβ-Cβ scoring function is unable to correctly identify

6 of the 26 structures as being non-native, and the average discrimination ratio is

poor relative to the ratio for the all-atom scoring function.
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While a function should be able to do more than just discriminate native

conformations from non-native ones, this results indicates that in an exhaustive or

semi-exhaustive folding simulation, the simplified scoring function is more likely

to fail since it is unable to tell a native structure from a conformation that is

significantly different in this simple test.

From these, and other similar tests [41],  it appears that taking into account as

much information as is available in a protein conformation enables one to achieve

better near native discrimination.  Given that it is not too difficult to generate all-

atom models from approximate representations [42, 43], the all-atom scoring

function is  an useful tool for protein structure prediction.

2.5. Summary

A well-suited scoring function for ab initio folding represents the most

native-like conformation as more favorable than all other non-native ones.

Current methods do not entirely succeed in this regard, as non-native folds have

scores that are as good as the near-native candidates, thereby presenting false

positives in exhaustive sampling or traps in minimization.  In general, functions

that employ compact reference states are more effective when selecting near-native

folds from sets of compact folds.

The style of protein structure prediction largely dictates the functional forms

and components necessary to compute the score of a conformation.  A complete

minimization without external constraints generally requires terms that enforce

secondary structure and compactness along with pair-specific interactions.

However, applying a biased conformational search based on sequence information

[21] can greatly reduce the complexity of the energy function necessary to recover a

significant number of native-like folds by minimization.

The success of the binary (hydrophobic and polar) functions suggests that

most of the specificity of the knowledge-based functions, at least with respect to
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reduced representations, is due to the frequent occurrence of hydrophobic contacts

in the interior of native proteins.  However, this success was observed in the context

of tertiary fold recognition; the native secondary structure was already in place.

The use of all-atom scoring functions for selecting near-native folds bears

promise.  To overcome the computational overhead involved in using an all-atom

function, one approach could involve sampling large amounts of conformational

space using a simplified fold representation and selecting the top scoring

conformations using a simple and fast scoring function.  All-atom coordinates for

these conformations can then be built, and the best conformations selected using the

all-atom function.  This complementary method of structure prediction would

reduce the number of false positives selected by the simplified function and help

avoid local minima traps.

3. NOTES

3.1 Generic simplified energy functions

3.1.1. Interaction centers

Contact functions may vary with respect to their designated “interaction

centers.”  Park et al. [34] test contact energy functions that use the Cα as a separate

type of interaction center (in addition to the 20 amino acid centroids).  It appears that

the inclusion of the Cα is detrimental for threading methods as it crudely monitors

the local backbone fitness.  Since threading methods derive their backbone

conformations directly from native structures, the Cα energy terms only add noise

to the signal [34].

The placement of a virtual centroid is also arbitary.  For instance, one might

take the mean projection of side-chain centroids in the database onto the Cα-Cβ

vector [13] or the average atomic coordinate centers of all side-chains of a given type

[14].  However, the overall performance of a scoring function does not seem to be

very sensitive to the placement of a single interaction center.
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3.1.2. Distance-dependent energetics

Contact functions are step-functions; when residues are within an arbitrary

cutoff distance an energy term is added to the total score.  A single cut-off can be

applied, as in the case of the Shell function described above.  Alternatively, one

could define different effective interaction distances depending on the pair of

residues [30].

Any “on/off “contact approach may be considered as non-physical because

Coulombic and van der Waals interactions smoothly increase and decrease as a

function of spatial distance.  To address this issue, Park et al. [34] tested a series of

functions with pairwise energetics identical to the contact functions, but with

Lennard-Jones style functional forms [44]:

    
E =

Aij

rij
8

ij
∑ −

Bij

rij
4

where Aij and Bij are energy parameters dependent on the contact energy eij between

residues i and j and the effective distance of interaction between i and j.  However,

the more complex distance-dependent functions did not perform any better than

simple contact functions at discriminating near-native folds in the test set described

earlier [34].

3.1.3. Multi-body interactions

Most statistical potentials are based on frequencies of pairwise interaction, but

functions that include higher-order terms have been developed [25, 45]. A recent

study on four-body interactions describes tendencies that cannot be captured by a

pair-potential, such as the preference for certain side-chain size combinations in the

hydrophobic core [45].  It would be interesting to test the performance of these

potentials on the decoy sets described in this chapter.

3.1.4. Reference state

In the Park & Levitt [30] implementation of the solvent-exposed reference
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state (section 2.2.2), all 210 residue pairwise energies are negative, which means that

the formation of new protein-protein contacts is always preferred.  Practically

speaking, if one were to use a solvent-exposed reference state to fold an polypeptide

chain from an extended conformation, a function such as the Contact(MJ) would

favor compact conformations and drive chain collapse.  However, the drawback of

using the solvent-exposed reference state in screening already compact

conformations is that the discrimination between the states is weak.  Thus, the Shell

function, which uses a generic compact shape as a reference exhibits far better

performance in the Park & Levitt ab initio test [30].  On the other hand, the Shell

function is less adept at recognizing a native fold from an semi-folded, expanded

decoy conformation generated by molecular dynamics at high temperature [34],

suggesting that this function cannot be used in minimization methods without

another term that monitors compactness.

3.2 Histogram function

Park et al. [34] observed that the distance-dependent energies extracted by this

function can lead to undesirable results in certain situations.  Because the database

of proteins used to compile the parameters includes proteins of all sizes, the most-

favored inter-residue distances for a given pair do not reflect those of the small

proteins that serve as ab initio targets.  This implies that if one tries to fold a small

protein using only a PMF without an additional term to enforce compactness, then

the most-favored structures will be more expanded than the native protein.  For

example, Simons et al. [21] used a scoring method related to the Histogram function

to drive the folding of their small proteins, but also considered the radius of

gyration as part of their final objective function.

3.3. Hydrophobic fitness function

This function, which does not require any parameters from the database,

performed surprisingly well in most of our tests.  However, because of its unusual
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functional form, is expected to be less amenable for minimization than screening

discrete folds.  Moreover, since it does not consider disulfide pairings, near-native

fold recognition for small proteins that depend on disulfide bridges is noticeably

worse than average [34].

3.4. All-atom scoring function

All the inter-atomic distances in the conformation are calculated given a set

of coordinates.  The number of occurrences of  atom pairs at particular distances are

stored. This process is repeated for all the coordinate files in the database.  Once the

raw counts are  collated, a table of negative log conditional probability scores for all

the 167x167 possible pairs of atoms for the 18 distance ranges [22] is computed

(section 2.4).

The all-atom scoring function is susceptible to the problems that plague other

knowledge-based functions: (1) the pairwise interactions observed are not

independent of each other,  (2) lack of sufficient observations to extract the “pseudo-

energies” accurately, (3) the choice of a proper reference state, and (4) an averaging of

environments.  In practice (2) is not a severe problem in this implemention as the

function does not use sequence separation, resulting in a greater number of

observations in a given distance bin; (3) is chosen for the application at hand: to

discriminate compact native conformations from non-native ones; (1) and (4)

require taking into account higher-order interactions, which given the size of the

current protein data bank [7] leads to sparse data.  As a consequence, a compromise

must be made between the number of parameters used and the size of the database.

Based on our studies on various decoy sets (see below), we feel these compromises

are justified.

3.5 Using decoy sets to evaluate scoring functions

Decoys (non-native or near-native conformations) are generally used to test

whether a scoring function is useful.  While the utility of a function lies in its use in
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exhaustive or minimization methods, a scoring function has to at least do well in

decoy-based tests before it can be considered for simulation.  Use of decoys has its

pitfalls, the primary one being that there may be artifacts in a particular decoy set

that are picked up by a scoring function, resulting in accurate discrimination for that

decoy set but not for others.  For example, the misfolded decoys described in section

2.4 are slightly expanded relative to the native structure.  Thus a simple function

that measures the amount of compactness does better than the Cβ-Cβ scoring

function with a compact reference state.  However, this simple function does not

work as well as the Cβ-Cβ function for the 1r69 decoy set.

Thus an “ideal” function is one that discriminates well (100%) for a variety of

decoy sets.  Adding detail to the function appears to move us closer to this goal

[22,41].
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