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Predicting the three-dimensional conformation adopted by a protein sequence
is an unsolved problem in computational molecular biology. Currently, the best
technique for the prediction of structure from sequence is comparative modelling:
in all known cases, two evolutionarily-related proteins with similar sequences
(> 30% sequence identity) have similar three-dimensional conformations. A
sequence alignment can therefore be used to construct a model for a target
sequence, using the coordinates of a related parent sequence for which a structure
has already been determined by experimental methods.

The predictive power of comparative modelling was objectively assessed by
making bona fide predictions for three targets at the first meeting for the Criti-

cal Assessment of protein Structure Prediction methods (CASP1) in December,



1994. The results from this meeting show that even though comparative mod-
elling is the best method available to predict structures, the context-sensitivity
of interactions in protein structures appears to be a major hurdle preventing the
construction of accurate models.

We use an algorithm based on graph theory to handle this problem. Each
possible residue conformation is represented as a node in a graph. Each node
is weighted based on the strength of the interaction between the side chain and
the local main chain. Edges are then drawn between nodes in a self-consistent
manner, and are weighted based on the strength of the interaction between the
two nodes. Once a graph representing all possible conformations and their inter-
actions is constructed, the maximal sets of completely connected nodes (cliques)
the size of the protein sequence are found using a clique finding algorithm. The
clique with the best weight represents the optimal combination of the main chain
and side chain possibilities that are input to the algorithm, and is assumed to
represent a correct native-like conformation.

We have tested this novel method objectively by making predictions at the
second meeting on the Critical Assessment of protein Structure Prediction meth-
ods (CASP2) in December, 1996, and find that significant improvements have
been made in the building of side chains and main chain regions in comparative

modelling.



A GRAPH-THEORETIC SOLUTION TO THE
CONTEXT-SENSITIVITY PROBLEM IN
PROTEIN STRUCTURE PREDICTION

by

V V Samudrala

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland at College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1997

Advisory Committee:

Professor John Moult, Chairman/Advisor
Professor Osnat Herzberg

Professor Doug Julin

Professor Samir Khuller

Professor Sarah Woodson






DEDICATION

To the twenty amino acids

11



ACKNOWLEDGEMENTS

First and foremost, this work would not have been possible without
the love of my first teacher, my mother, and her belief in my abilities.
Every teacher I've had since then has played a role in bringing this
work to fruition: from my high school mentors to my undergraduate
and graduate professors. In particular, I thank Drs. Alan Zaring
for being the guiding inspiration of my undergraduate life, Jeffrey
Nunemacher for constantly pushing me to the limit of my abilities,
and Gerry Goldstein, for guiding me to the right path in molecular

biology.

I thank my candidacy and dissertation committee members, Drs.
Dave Mount, Doug Julin, Osnat Herzberg, Samir Khuller, and Sarah
Woodson, for their time and advice during the course of my candi-

dacy and final defense.

I am grateful to Shriram Krishnamurthi for picking out the flaws

in my thinking; Jan Pedersen for giving me new ideas, construc-

111



tive criticism, financial aid, and help in writing the thesis; Brett
Milash, Michael Braxenthaler, Rui Luo, and Zhanglin Lin for engag-
ing intellectual conversations; Hillary Gilson, Jim Given, and Ursula
Pieper for critical reading of the thesis; and everyone else at CARB,
USENET, and elsewhere who patiently listened to my ideas and of-

fered me advice.

I thank John Moult, for being a mentor, a friend, and giving me
a direction to proceed. The wonderful arguments, the ice cream
and the movies, his energetic and jolly attitude, and his constant

encouragement have had a tremendous impact on this work.

Final thanks go out to Maureen Perotto who has put up with a lot,
especially in the time of writing the thesis, and has been a source of

pleasant distraction while providing constant support.

This work was supported in part by a Life Technologies Fellowship
to Ram Samudrala and National Institutes of Health grant GM41034
to John Moult. Some computations were performed using National

Instutite of Standards and Technology computing resources.

v



TABLE OF CONTENTS

List of Tables x1
List of Figures xiii
List of Abbreviations xvi

1 Background and overview

1.1 From protein sequence to protein structure to protein function . . 1
1.2 Predicting structure through comparative modelling . . . . . . .. 2
1.2.1 The model building process . . . . .. ... .. ... ... 3
1.2.2  Problems with current comparative modelling approaches . 5
1.2.3 A solution to the context-sensitivity problem . . . . . . . . 9
1.2.4 Evaluation of comparative modelling methods . . . . . . . 10
1.3 Organisation of the thesis . . . .. ... ... ... .. ... ... 11
2 Confronting the problem of interconnected structural changes
in the comparative modelling of proteins 13
2.1 Imtroduction . . . . . . . ... 13
2.2 Methods . . . . . . . 14
2.2.1 Search for parent sequences with known structure . . . . . 14
2.2.2  Sequence and structure alignment . . . . . ... ... L. 14
2.2.3 Building side chains . . . . . ... ... 15
2.2.4 Building insertions and deletions . . . . ... ... .. .. 16
2.2.5 Building other regions of main chain variation . . . .. .. 18
2.2.6  Model refinement . . . . .. ..o 18
2.2.7 Calculation of RMSDs between the model and experimen-
tal structures . . . ..o L Lo 18
23 Results. . . .. . 19
2.3.1 Template structures for modelling . . . . . . ... ... .. 19
2.3.2 Sequence alignment . . . .. ... 19
233 Sidechains . ... ... . o 22



2.3.4 Insertions and deletions . . . . . . . . ... .. ... ... 26

2.3.5  Other regions of main chain variation . . . . . ... .. .. 27
2.3.6 Model refinement . . . . .. ... 30
2.3.7 Overall accuracies of the model compared to the experi-
mental structure . . .. ..o 30
2.4 Discussion . . . . ... 31
241 Alignment . . . .. ..o 31
2.4.2  Selecting side chain rotamers. . . . . ... ... L L. 31
2.4.3 Insertions and deletions . . . . . ... ... ... 32
2.4.4 Identification of regions of main chain variability . . . . . . 35
2.4.5 Choice of alternate templates . . . . . ... .. ... ... 36
2.4.6 Long term hopes . . . . .. .. .. ... ... 36
2.5 SUmmary ... o.o. o e e e e 37
An all-atom distance-dependent conditional probability discrim-
inatory function for protein structure prediction 39
3.1 Imtroduction . . . . . . . ... 39
3.2 Methods . . . . . . . 41
3.2.1 The conditional probability formalism. . . . . . ... ... 42
3.2.2 The potential of mean force . . . ... ... .. ... ... 45
3.2.3 The residue-specific all-atom probability discriminatory
function . . . . ... 46
3.2.4 The residue-specific virtual-atom probability discrimina-
tory function . . . . ... L Lo 47
3.2.5 The non-residue-specific virtual-atom probability discrim-
inatory function . . . . . .. .. Lo 49
3.2.6  The contact discriminatory function . . . . . . . .. .. .. 49
3.2.7 The linearly interpolated residue-specific all-atom proba-
bility discriminatory function . . . . . ... .. .. .. .. 50
3.2.8 Low counts analysis . . . . . ... ... ... ... ... .. 51
3.2.9 Construction of the structure library for obtaining condi-
tional probabilities . . . .. .. ..o 52
3.2.10 Decoy set generation . . .. ... ... ... ... ..... 52
3.2.11 Decoy set evaluation . . .. ... ... ... .. .. .... o4
3.3 Results. . . .. . . 56
3.3.1 The all-atom discriminatory function performs the best
across a wide variety of decoys . . . . . .. ... 56
3.3.2 Discriminatory power decreases upon successive approxi-
mations . . . . ... 61
3.3.3 The compactness term alone is useful for discriminating
between correct and incorrect conformations . . . . . . .. 61
3.3.4 Using a large distance cutoff helps in discrimination . . . . 61

vi



3.3.5 Comparison of the contribution of electrostatics and non-
electrostatics terms . . . . . .. ..o 62
3.3.6  Linear interpolation improves discrimination . . . . . . . . 63

3.3.7 The problem of sparse data for compilation of probabilities
isnegligible . . . ... Lo o 64

3.3.8 Relationship between the conditional probabilities and the
nature of physical interactions in proteins . . . .. .. .. 68
3.4 Discussion . . . . . ..o 76

3.4.1 Performance of the all-atom residue-specific probability
discriminatory function . . . . . . ... ... 76

3.4.2 Effect of approximating the detail in the discriminatory
function representation . . . . . .. ... 77
3.4.3 Effect of the compactness term on predictive power . . . . 77
3.4.4 Effect of using a large distance cutoft . . . . . . .. .. .. 78
3.4.5 Contributions of electrostatics and non-electrostatics terms 79
3.4.6 Effect of linear interpolation and the problem of sparse data 79
3.4.7 Effect of artifacts in the decoy sets . . . . . .. .. .. .. 80
3.4.8 Limits on the resolution of the discriminatory functions . . 82
3.4.9 Effect of experimental accuracy . . . . ... .. ... ... 82

3.4.10 Relationship between the conditional probabilities and the
nature of physical interactions in proteins . . . .. .. .. 83

3.4.11 Availability of conditional probability tables on the World
Wide Web . . . . . . oo 84
3.5 Summary ... .. e 84
4 An analysis of side chain preferences in protein structures 86
4.1 Introduction . . . . . . . . ... 86
4.2 Methods . . . . . . .. 88
4.2.1 Description of discriminatory functions . . . . . .. .. .. 88
4.2.2 Definition of x angles . . . . .. .. ... oL 90
4.2.3 Description of rotamer library . . . . . .. ... ... ... 90

4.2.4  Selection of the protein structures for testing side chain
building . . . . .. ... 91
4.2.5 Exploration of side chain conformations . . . . . .. .. .. 91

4.2.6  Generation of side chain conformations using only the local
main chain . . . .. ... 0L 93

4.2.7 Generation of side chain conformations using the entire
main chain . . . .. ... 0oL 94
4.2.8 Generation of side chain conformations in a pairwise manner 94
4.2.9 Evaluation of side chain construction . . . . ... ... .. 95
4.2.10 Comparison to other methods . . . . . . . ... ... ... 95
4.2.11 Effect of rotamer library approximation . . . . . . . . . .. 97

Vil



43 Results. . . . . . 98
4.3.1 Construction of side chains using only the local main chain 98
4.3.2 Accuracy of individual residue side chain construction us-

ing only the local main chain . . . .. .. ... ... ... 99
4.3.3 Counstruction of side chains using the entire main chain . . 103
4.3.4 Construction of side chains in a pairwise manner. . . . . . 103
4.3.5 Comparison of side chain construction at a single residue
level using local and pairwise information . . . . . . .. .. 104
4.3.6 Comparison to other methods . . . . . ... ... ... .. 106
4.3.7 Effect of rotamer library approximation . . . . . . . .. .. 109
4.3.8 Effect of experimental uncertainty . . . . . . . ... .. .. 111
4.4 DISCUSSION . . . v v v i e e 111
4.4.1 Effect of environment on side chain construction . . . . . . 111
4.4.2 Choice of criteria for evaluation of side chain building
methods . . . . . . .. 112
4.4.3 Effect of secondary structure and residue type on side
chain construction . . . .. .. .. ... ... ... 113
4.4.4 Comparison to other methods . . . . . .. ... ... ... 114
4.4.5 Effect of rotamer library approximation . . . . . . . .. .. 115
4.4.6 Building side chains in a realistic modelling situation . . . 115
4.5 Summary ... ... e e 117
5 A graph-theoretic approach to protein structure prediction 119
5.1 Imtroduction . . . . . . . . ... 119
5.2 Methods . . . . . . . 122
5.2.1 General description . . . .. ... 122
5.2.2 Description of nodes . . . . ... oo 124
5.2.3 Description of edges . . . . .. ... L. 124
5.2.4  Description of the discriminatory function . . . . .. . .. 125
5.2.5 Description of side chain sampling methods . . . . . . .. 127
5.2.6  Description of main chain sampling methods . . . . . . .. 128
5.2.7 Description of the clique finding method . . . . . . .. .. 130
5.2.8 Application to a comparative modelling scenario . . . . . . 132

5.2.9 Building side chains in a comparative modelling scenario . 133
5.2.10 Mixing and matching between different parent homolog

structures . . . ... L Lo 135

5.2.11 Building regions of main chains (loops) in an intercon-
nected manner . . . .. .. ... 136
5.2.12 Implementation issues . . . . . . .. ... 137
53 Results. . . .. . 141
5.3.1 Building side chains . . . . . ... ... oL 141
5.3.2  Mixing and matching between homologs . . . . . . .. .. 146

Viil



5.3.3 Building regions of main chain . . . . . ... ... L. 147

5.3.4 Computation times . . . . . . .. ... 152
5.4 Discussion . . . . ... 153
5.4.1 Building side chain conformations . . . . ... ... .. .. 153
5.4.2 Mixing and matching . . . . .. ... oL 154
5.4.3 Building main chain regions . . . . . ... ... ... L. 155
5.4.4 Sampling side chains and main chains . . . . . . .. .. .. 156
5.4.5 Tractability and complexity of clique finding . . . . . . .. 156
5.4.6  Choice of the Bron and Kerbosch algorithm for clique finding157
5.4.7 Sizes of problems that can be handled . . . .. ... ... 158
5.4.8 Advantages of this method compared to conventional sear-
ch methods . . .. ... ... .. ... 158
5.4.9 Limitations of this method . . . . . . . ... .. ... ... 159
5.5 Summary ... .. e 159
Handling context-sensitivity in protein structures using graph
theory: bona fide prediction 161
6.1 Introduction . . . . . . . . ... 161
6.2 Methods . . . . . . . . 162
6.2.1 Search for parent sequences with known structure . . . . . 162
6.2.2 Sequence and structure alignment . . . . ... ... L L. 162
6.2.3 Construction of an initial model . . . . . . . . ... .. .. 164
6.2.4  General description of the graph-theoretic clique finding
approach . . . . . ... Lo 164
6.2.5 Description of discriminatory function . . . .. ... ... 166
6.2.6 Building side chain conformations . . . . ... ... .. .. 166
6.2.7 Building main chain conformations . . . ... ... .. .. 168
6.2.8 Clique finding . . . . . . .. ... Lo 169
6.2.9 Model refinement . . . . .. ..o 169
6.3 Results. . . .. .. . . 170
6.3.1 Sequence alignment . . . .. ... L. 170
6.3.2 Side chain building . . . . . .. ... L 173
6.3.3 Main chain building . . .. ... ... 177
6.3.4 Model refinement . . . . .. ..o 182
6.3.5 Overall accuracies of the model compared to the experi-
mental structure . . .. ... L Lo 182
6.4 Discussion . . . . . . . 183
6.4.1 Alignment . . . .. ... Lo 183
6.4.2 Sidechains . ... ... ... oo 185
6.4.3 Main chains . . . . ... Lo 185
6.4.4 Bona fide prediction . . .. ... ... 0oL 186
6.5 Summary . . ... .. e 187

1X



7 Conclusion
7.1 Progress of comparative modelling . . . . . .. ... ... ... ..

7.2 Theroad ahead . . . . . . . . . ..

7.3 Final remarks . . . . . . ..

A Visual overview
A.1 Visual comparison between the model and the corresponding ex-
perimental structure for CASP1 and CASP2 targets . . . . . . ..

Bibliography



2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

3.3

3.4

3.5

LIST OF TABLES

Percentage sequence identity between the target sequence and
other homologous sequences with known structures for CASP1
targets . . . L. L L L

Percentage of model x angles that deviate more than 30° from the
experimental structure for CASP1 targets . . . ... ... .. ..

Correlation of individual x angle errors with other errors in the
cellular retinoic acid binding protein I model . . . . . . . . . . ..

Co, RMSDs between the experimental structure and the model
for insertions and residues flanking the single deletion for CASP1
targets . . . oL oL L L

Co RMSDs for other regions of main chain variation for CASP1
targets . . . oL L

Accuracy of the models that were built compared to the experi-
mental structures for CASP2 targets . . . .. .. ... ... ...

The interconnectedness of the insertions and deletions and other
regions of main chain variation for CASP1 targets . . . . . . . ..

List of atom types used in the residue-specific all-atom probability
discriminatory function . . . . . . . .. ... L.

List of virtual atom types used in the residue-specific and non-
residue-specific virtual-atom probability discriminatory functions .

List of PDB codes of the 265 protein chains used for compilation
of conditional probabilities . . . . . .. .. .. ... ... ...

Details of class I decoys . . . . . . ... ... ... .. ......

Details of class IT decoys . . . . . . .. . ... ... .. ......

x1



3.6

4.1
4.2

4.3

4.4

4.5

4.6

5.1

5.2

3.3

5.4

3.5

3.6

6.1

6.2

Details of the raw counts obtained when compiling the conditional

probabilities . . . . . ..o 65
Definitions of x angles . . . . . .. ... oL 90
Main chain independent rotamer library used to sample side chain

conformations . . . . . . ... Lo 92
List of proteins selected to test side chain construction . . .. .. 93

List of proteins selected to compare side chain construction again-
st other methods . . . . . . .. ... . oo 98

Comparison of side chain construction using the local main chain
to four other previously published methods . . . . . . . .. .. .. 110

Effect of using a discrete rotamer library approximation to sample
side chain conformations . . . . . . .. .. ... oL 110

Details of the four complimentary determining regions built in the
D1.3 antibody using the clique finding method . . . . . . . .. .. 137

Results of side chain construction for 27 residues using the clique
finding method for the histidine-containing phosphocarrier protein 142

Analysis of x angles that were incorrectly built for 27 residues in
the histidine-containing phosphocarrier protein using the clique
finding algorithm . . . . . . ... ..o o 143

Results of simultaneously building complimentary determining re-
gions in the D1.3 antibody structure using the clique finding al-

gorithm . . . . . . . 148
Details of the sources for the four complimentary determining
regions built using the clique finding method . . . . . . . . .. .. 150
Computation times of the clique finding method for the three
comparative modelling scenarios . . . . . .. ... L 152
Details of side chain sampling for three CASP2 targets . . . . . . 167

Percentage sequence identity between the target sequence and
other homologous sequences with known structures for CASP2
targets . . . .. L. 170

x11



6.3

6.4

6.5

6.6

6.7

Analysis of side chain residues that were built using the clique

finding method for CASP2 targets . . . . . .. ... .. ... ...

Analysis of side chains with an error of more than 30° in the y;
angle built by using the clique finding method on main chains that
were copied from the parent experimental structure for CASP2
targets . . . L. L L

Analysis of the predictions of 22 main chain regions that were
built using the clique finding method for CASP2 targets . . . . .

Computational details of 22 main chains that were built using the
clique finding method for CASP2 targets . . . . .. .. .. .. ..

Accuracy of the models that were built compared to the experi-
mental structures for CASP2 targets . . . .. ... .. ... ...

X111



1.1

1.2

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

LIST OF FIGURES

Main chain and side chain building scenarios in comparative mod-
elling . . . . . L

Comparison of the predicted and experimental active site region
in the histidine-containing phosphocarrier protein . . . . . . . ..

Differences between the final correct sequence alignments and
those generated by automated sequence alignment methods for

CASPI targets . . . . . . . o

Final alignments of the cellular retinoic acid binding protein I
target sequence to other sequences in the family that have known
structures . . . . .. Lo

An example of an incorrect model rotamer in the cellular retinoic
acid binding protein I that is unacceptable given the context of
the experimental structure . . . . . .. .. ... L.

Correlated changes between the N terminus and the loop around
residues 46-52 in the cellular retinoic acid binding protein I com-
pared with the closest homolog . . . . . . .. .. ... ... ...

An example of an error in the building of one main chain region
excluding the selection of the correct conformation of another re-
gion for the eosinophil derived neurotoxin. . . . . . . . .. .. ..

Comparison of the performances of different discriminatory func-
tions on all class I decoy sets . . . . . ... ... ... ... ....

Comparison of the performances of five discriminatory functions
for selected decoys in the CASPlset . .. .. .. ... ......

Comparison of the performances of different discriminatory func-
tions on the LOOP decoy set . . . .. .. .. ... ... .....

x1v



3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

4.1

4.2

4.3

4.4

4.5

4.6

Comparison of the performance of the residue-specific all-atom
probability discriminatory function at different cutoffs . . . . . . .

Comparison of electrostatic, non-electrostatic, and combined ter-
ms in the residue-specific all-atom probability discriminatory fun-
ctlon . . ..o

Comparison of the residue-specific all-atom probability discrimi-
natory function to the linearly-interpolated version . . .. . . ..

Comparison of the effect of counting uncertainties on the condi-
tional probabilities . . . . . . ... L. L

Conditional probability plots for all C,-C, contacts and all C3-Cg
contacts . . . . ... L

Conditional probability plots all N-O contacts and contacts be-
tween all main chain nitrogens and aspartic acid Og; . . . . . . .

Conditional probability plots for alanine C,-alanine C, and valine
Cq-valine C, contacts . . . . . . . . . . . . .. ..

Conditional probability plots for apartate N-lysine O and proline
N-tryptophan O contacts . . . . . . . . . ... ... .. ... ...

Performance of the residue-specific all-atom probability discrimi-
natory function for a selected loop in the LOOP decoy set

Results of building side chain conformations for fifteen proteins
using the local main chain . . . . . .. ... o000

Results of building side chain conformations for seventeen amino
acid types using the local main chain . . . . . ... .. ... ...

Differences in the accuracy of building seventeen amino acid types
using the local main chain as a function of main chain secondary
structure . . . . ... oo

Results of building side chain conformations for fifteen proteins
using the entire protein main chain . . . . . . .. ... ... ...

Results of building side chain conformations for fifteen proteins in
a PAITWISE MANTET . . .+« v v v v e e e e e e e e e e

Comparison of side chain construction using only local main chain
information and that plus pairwise information. . . . . . . . . ..

Xv

77



5.1

5.2

3.3

0.4

6.1

6.2

6.3

6.4

6.5

7.1

Al

A2

Mlustration of the graph-theoretic clique finding method for pro-
tein structure prediction . . . . .. ... ... L.

Definition of covalent consistency in the graph-theoretic clique
finding approach . . . . . ... oL

Comparison between clique-evaluated weights and the conditional
probabilities of the conformations represented by the cliques

Comparison of conformations built using the clique finding me-
thod to the experimental structure for four complimentary deter-
mining regions in the D1.3 antibody . . . . . . ... ... ... ..

Differences between the alignment used for the modelling exercise
and the correct alignment based on a structural superposition for

CASP2 targets . . . . . . ...

Comparison of side chain conformations predicted using the clique
finding method to the experimental structure for cucumber stel-
lacyanin . . . . . . ...

Comparison of side chain conformations predicted using the clique
finding method to the experimental structure for the ubiquitin
conjugating enzyme . . . . . . ... .o e e

Comparison of conformations predicted using the clique finding
method to the experimental structure for three context-sensitive
regions in the ubiquitin conjugating enzyme . . . . . . .. .. ..

Visual comparison between the model and the experimental struc-
ture for the ubiquitin conjugating enzyme illustrating regions of
main chain that were copied from the parent structure and regions
that were built using the clique finding method . . . . .. .. ..

Plot of C, RMSD vs. difficulty for models of targets from the
first and second experiments on the Critical Assessment of protein
Structure Prediction methods . . . . . . . .. ... ...

Visual comparison between the model and the experimental struc-
ture for the histidine-containing phosphocarrier protein . . . . . .

Visual comparison between the model and the experimental struc-
ture for the cellular retinoic acid binding protein I . . . . . . . ..

xv1



A3

A4

A5

A6

A7

Visual comparison between the model and the experimental struc-
ture for the eosinophil derived neurotoxin . . . . . . .. ... ...

Visual comparison between the model and the experimental struc-
ture for endoglucanase I . . . . . . .. ... L0

Visual comparison between the model and the experimental struc-
ture for the ubiquitin conjugating enzyme . . . . . . ... .. ..

Visual comparison between the model and the experimental struc-
ture for cucumber stellacyanin . . . . . . . .. ... .. ... ...

Visual comparison between the model and the experimental struc-
ture for the polyribonucleotide nucleotidyl s-transferase . . . . . .

xvil



LIST OF ABBREVIATIONS

AMPS, Alignment of Multiple Protein Sequences
BLAST, Basic Local Alignment Search Tool

CASP, Critical Assessment of protein Structure Prediction methods
CDF, contact discriminatory function

CDR, complimentary determining region

CF, clique finding

crabpi, cellular retinoic acid binding protein I

csc, cucumber stellacyanin

DSSP, Dictionary of Secondary Structure Preferences
edn, eosinophil derived neurotoxin

egi, endoglucanase 1

e5.2, immunoglobulin domain protein

GA, genetic algorithm

HIV, Human Immunodeficiency Virus

HMM, Hidden Markov Model

hpr, histidine-containing phosphocarrier protein

IFU, independent folding unit

XViil



IRAPDF, linearly interpolated residue-specific all-atom conditional prob-
ability discriminatory function

MP, Minimum Perturbation

ncd, neurocalcin delta

NMR, nuclear magnetic resonance

nm?23, nucleoside disphosphate kinase protein

NVPDF, non-residue-specific virtual-atom conditional probability discrim-
inatory function

PDB, Protein Data Bank

PDF, probability discriminatory function

pnsl, polyribonucleotide nucleotidyl s-transferase
p450, heme protein

RAPDF, residue-specific all-atom conditional probability discriminatory
function

RVPDF, residue-specific virtual-atom conditional probability discrimina-
tory function

RMSD, root mean square deviation

SCD, self-consistent domain

SCOP, Structural Classification of Proteins
ubc9, ubiquitin conjungating enzyme

3D, three-dimensional

X1X



Chapter 1

Background and overview

1.1 From protein sequence to protein structure
to protein function

Once a protein sequence has been determined, deducing its unique three-dimen-
sional (3D) native structure is a daunting task. Experimental methods to de-
termine protein structure in detail, such as x-ray diffraction studies and nuclear
magnetic resonance (NMR) analyses, are highly labour intensive [1, 2, 3, 4, 5].
Since it was discovered that proteins are capable of folding into their unique
functional 3D structures without any additional genetic mechanisms [6], over 25
years of effort has been expended into the determination of 3D structure from
sequence alone, without further experimental data. Despite the amount of effort,
the protein folding or protein structure prediction problem, as it has come to be
known, remains largely unsolved [7, 8, 9, 10, and references therein].

Knowing the structure of a protein sequence enables us to probe the function
of the protein [11, 12, 13, 14, for example|, understand substrate and ligand

binding [15, 16, 17, 18, for example], devise intelligent mutagenesis and bio-



chemical protein engineering experiments that improve specificity and stability
[19, 20, 21, 22, for example|, perform rational drug design [23, 24, for example],
and design novel proteins [25, 26, 27, for example]. Understanding structure has
potential applications in the various genome projects being undertaken, such
as mapping the functions of proteins in metabolic pathways for whole genomes

[28, 29] and deducing evolutionary relationships [30].

1.2 Predicting structure through comparative
modelling

The continually increasing amount of DNA and protein sequence data from
genome projects makes it infeasible for NMR and x-ray crystallography tech-
niques to rapidly provide information about the 3D structures of the sequences
determined [31]. Thus there is an urgent need for predicting structure from
amino acid sequence. Over the last 30 years, a simple but powerful way to
make predictions concerning the 3D structure of proteins utilising evolutionary
relationship among families of proteins has been developed [8, 32, 33].
Comparative modelling exploits the fact that evolutionarily related proteins
with similar sequences, as measured by the percentage of identical residues at
each position based on an optimal structural superposition, have similar struc-
tures [34]. For example, 75 pairs of hemoglobin structures with percentage se-
quence identities ranging from 30% and above can be superimposed within a
Cq root mean square deviation (RMSD) of 2.0 A for all pairs of superimposable
residues [35, 36]. The similarity of structures is very high in the so-called “core

regions”, which typically are comprised of a framework of secondary structure



elements such as a-helices and (3-sheets [34]. Loop regions connect these sec-
ondary structure and generally vary even in pairs of homologous structures with
a high degree of sequence similarity. [37, 38].

One of the earliest comparative models was that of bovine trypsin which
was built from the homologous serine protease a-chymotrypsin, where the dif-
ferences in the specificity pockets between trypsin and chymotrypsin were suc-
cessfully explained through the use of the model [39]. Since then, comparative
modelling methods have been used in applications as diverse as constructing
an approximate model of the Human Immunodeficiency Virus (HIV) protease
which was built based on the identification of a catalytic triad observed in the
acid proteases [40]; predicting a variety of features of lysosomal proteins such as
catalytic, binding, and proteolytic cleavage sites [41]; and identifying new classes
of “lead” compounds for drug development against enzymes in the malarial [42]
and schistosome parasitic life cycles [43].

Comparative modelling generally has also been used to aid in the deter-
mination of phases for solving crystal structures using molecular replacement
[44, 45] and has helped focus site-directed mutagenesis studies of the relation-
ship between structure and function in macromolecules [46], as well as studies

of specificity and stability in molecular recognition [47, 48].

1.2.1 The model building process

Given a target sequence and a related parent structure, the process of building
a model is conceptually straightforward [8, 49]. First, an alignment is performed
between the sequence for which the structure has been determined by exper-

imental methods (the parent) with the sequence to be modelled (the target).



This sequence alignment is used to construct an initial model (sometimes re-
ferred to as a framework or template) by copying over some side chain and main
chain coordinates from the parent structure based on the equivalent residue in
the sequence alignment.

Figure 1.1 illustrates situations where side chains and main chains need to
be built. Side chains in the alignment that are not identical, and identical side
chains thought to vary between the parent and target structures, are built using
a variety of side chain building methods available [50, 51, 52, 53].

Generally, a given alignment may have regions in the target sequence that
do not correspond to any other region in the parent sequence. These regions
represent insertions in the target relative to the parent (Figure 1.1a). Since no
corresponding coordinates exist in the parent structure, the residues in these
regions must be built using a variety of main chain building methods available
(54, 55, 56, 57, 58, 59]. In the case of regions in the parent sequence that do not
correspond to any other residue in the target sequence, which represent deletions
in the target relative to the parent (Figure 1.1b), the model must be constructed
in such a way that the peptide bond between the residues neighbouring the
deletion is covalently plausible. Finally, there may be regions in the alignment
that do not correspond to insertions or deletions but may have low level of local
sequence identity. These regions can potentially vary in the target structure and
thus must also be built by some means other than simply copying the atomic
coordinates from the parent structure(s).

Building side chains in all cases where the main chain is built must be done
simultaneously. The accuracy of the side chain prediction inevitably depends on

the accuracy of the main chain prediction [60].



The accuracy of comparative models generally depends on the percent of
sequence identity between the target and parent structures, with C, RMSDs
ranging from 1.0-2.0 A for alignments with > 40% sequence identity to RMSDs
higher than 6.0 A (which is close to random for small proteins) for alignments

with < 30% sequence identity [§].

1.2.2 Problems with current comparative modelling ap-

proaches

Accurate prediction of the amino acid sequence alignment, side chain, and main
chain conformations is absolutely essential if the model built is to be of use in
further studies regarding function. Errors in any or all of these components in
the model building process can result in significant deviations between the model
and target structures in important functional regions.

For example, in the case of model building of eosinophil derived neurotoxin
(edn) by Sali and co-workers [61], residues 1-16 are misaligned. In this case, the
misalignment affects the active site residues, glutamine 14-histidine 15, in the
edn experimental structure. These residues should be aligned to glutamine 11-
histidene 12 in the parent structure (ribonuclease A), but are aligned to threonine
17-serine 18. The active site histidine in the model as a result of this misalign-
ment is more than 20.0 A away from its correct position in the experimental
structure.

In the case of the model building of the histidine-containing phosphocarrier
protein (hpr) from M. capricolum by Delarue and Koehl [8], the side chain
conformation of aspartic acid 10 which forms part of the active site was predicted

incorrectly, as was the main chain region containing the other active site residues



(a) Insertion

target ... GRAFTYIK LHGREVQSCVDMN..
parent ... GKAFTFLRL———DWQACWNMN..

(b) Deletion

target ... GRAFTYIK L-——EWQSC\VDMN..
parent ... GKAFTFLRLHGROWQACWNMN..

(c) Region of main chain variation

target ... GRAFTYIKLGTVEWQACVDMN..
parent ... GKAFTFLRLHGRIVQACWMN..

Figure 1.1: Main chain and side chain building scenarios in comparative mod-
elling. An alignment is first performed between the sequence for which structure
has been determined by experimental methods (the parent) and the sequence
to be modelled (the target). The sequences are listed in one-letter code for the
amino acid, and bold letters indicate identities in the sequence alignment. Side
chains must be built for any residues in the target that does not correspond to
an identity in the alignment, and for any residues where the side chain confor-
mation is thought to vary in the target relative to the parent structure. Main
chains must be built in the case of insertions (a), regions surrounding a deletion
(b), and in other regions of suspected main chain variation (c¢), indicated above
by a thick line. All other main chain and side chain conformations are simply
copied from the parent structure.

histidine 15 and arginine 17. Figure 1.2 compares the predicted model to the
experimental structure in these regions.

Each of the above issues in comparative modelling, accuracy of alignment,



Figure 1.2: Comparison of the predicted (white) and experimental (black) ac-
tive site region in the histidine-containing phosphocarrier protein (hpr) from M.
capricolum. The predictions were made by Delarue and Koehl as part of the first
meeting on the Critical Assessment of protein Structure Prediction (CASP1) [§].
The three active site residue side chains (aspartate 10, histidine 15, and arginine
17) are shown with all atoms, and the main chain region from residues 9-18 is
shown as a C, trace. The conformations of all three side chains are predicted
incorrectly. The missing atoms in the arginine 18 side chain in the experimental
crystallographic conformation is due to a lack of electron density associated with
the side chain beyond the C;s atom.



side chain positioning and main chain construction, has implications with regard
to the usefulness of the model built. If the alignment, side chains, and main
chains in the above examples had been predicted accurately, the resulting models
may have been useful to a molecular biologist in designing experiments that
probe function. However, if important functional regions, which can include side
chains in the active site as well as “loop regions” that interact with the binding
site, are not predicted accurately, the model is useless.

In each scenario, current comparative modelling methods fail because they
do not take into account the environment in which model building occurs. That
is, they ignore the interconnectedness, or context-sensitivity, seen in protein
structures [62]. This is explored in greater detail in Chapter 2.

In the case of alignment, taking the environment into account involves con-
structing an initial model and checking to see if it makes sense structurally. For
building side chains and main chain regions, residues present in the environment
of the initial model that are in contact with the region being built must also be
constructed simultaneously. Building side chains and main chain regions while
keeping the environment fixed may result in inaccurate predictions for two rea-
sons: (i) correct conformations, even if selected by a discriminatory function,
may be sterically excluded as the environment is only approximate, and (i)
the environment in some cases can be grossly incorrect [8] and it is likely that
the prediction of a side chain or a main chain in the context of an incorrect
environment will fail due to poor energetics.

For example, in the case of modelling the active site of the M. capricolum hpr
(Figure 1.2), the corresponding amino acid to aspartic acid 10 in the sequences

of three related parent hprs, one of which was used by Delarue and Koehl as



a template to build the model, is an alanine residue. The main chain region
around residues 13-17 also shifts slightly in the M. capricolum hpr relative to
the other hprs [63]. Thus a model building approach must take into account the
structural context-sensitivity of the active site and build the main chain and side

chain conformations simultaneously in that region for accurate prediction.

1.2.3 A solution to the context-sensitivity problem

For building side chains and main chains in an interconnected context-sensitive
manner, we propose a solution based on a graph-theoretic clique finding ap-

proach. This approach assumes that the following exist:

o A sequence alignment method for aligning the target sequence to the parent
sequence accurately in such a way that the sequence alignment is identical
to a structure-based alignment obtained from optimal superimposition of

the structures.
e A method for sampling side chain conformations.

e A method for sampling main chain conformations for building insertions,

residues around a deletion, and other regions of main variation.

e A discriminatory function for distinguishing correct side chain and main

chain conformations from incorrect ones.

While existing sequence alignment and main chain sampling methods are
not perfect, we do not develop any new methods for alignment of sequences and

for sampling main chain regions. Instead, we use pre-existing algorithms and



techniques. We focus our efforts on developing a discriminatory function for dis-
tinguishing correct conformations from incorrect ones, a method for generating
the most probable side chain conformations given a fixed main chain, and use
this in conjunction with a main chain sampling method previously published
to predict side chain and main chain conformations in comparative modelling

situations.

1.2.4 Evaluation of comparative modelling methods

Even though comparative modelling has been demonstrated to have broad utility
(see discussion at the beginning of Section 1.2), until recently there have been
only very few cases where the modelling process has been assessed objectively.
While many comparative modelling methods published in the literature have
produced good results in test cases where the experimental structure is already
known, the results have not been generally positive in cases where the models
were built before the solution of the experimental structure [64].

In 1994, for the first time, an experiment on the Critical Assessment of protein
Structure Prediction methods (CASP1) was held to objectively and rigourously
assess protein structure prediction methods, including comparative modelling
methods, in a large-scale manner [7, 8]. This experiment was designed to test
predictive methods by seeking predictions for sequences for which the correct
experimental structures were not known ahead of time. The models built for
these sequences were collected before the corresponding experimental structures
were published and then compared to the correct answers. The predictive powers
of different methods were assessed and compared using identical criteria. In 1996,

a second experiment, CASP2, was held in a similar spirit.
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While we provide standard benchmarks and test our methods in cases where
the answer is already known, we use the results of the first and second CASP
experiments as the definitive tests of our predictive methods, and to evaluate

the progress of our comparative modelling methods.

1.3 Organisation of the thesis

The next chapter introduces the context-sensitivity problem which we were
forced to confront at CASP1 while building comparative models (using a combi-
nation of conventional methods) for three proteins, and provides the motivation
for this work.

Chapters 3 and 4 describe a discriminatory function to distinguish correct
from incorrect structures of a protein sequence and a side chain sampling method
for generating the most probable side chains giving a fixed main chain. Chapter
5 illustrates how these methods are combined using a graph-theoretic clique
finding approach, with a main chain sampling method previously published, to
handle the context-sensitivity problems encountered in comparative modelling.

Chapter 6 assesses how the graph-theoretic clique finding method performs
by making blind predictions at CASP2.

Each of the topics addressed in the above chapters in and of itself helps further
our understanding of protein structure-function relationships and is therefore
treated as an independent unit. Each chapter also contains a summary that
outlines the main points made in that chapter and places it in the context of the
rest of the thesis.

We conclude by comparing the progress of our comparative modelling ap-

11



proach from CASP1 to CASP2, with some ideas about future prospects.
Appendix A provides a visual comparison between the experimental struc-

tures and the models constructed by us for CASP1 and CASP2 targets.
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Chapter 2

Confronting the problem of
interconnected structural changes in

the comparative modelling of proteins

2.1 Introduction

Our objective in this work was to test the usefulness of as many of the avail-
able computational techniques for comparative modelling as possible, and to try
to see where improvements can be made. To this end, models of three of the
target proteins, the histidine-containing phosphocarrier protein from M. capri-
colum (hpr; 89 residues [63]), the cellular retinoic acid-binding protein I from

M. musculus (crabpi; 137 residues' [65]), and the eosinophil derived neurotoxin

'We constructed two models of crabpi; we only consider the model with the lower RMSD
to the experimental structure in this work. The numbering of the residues in the PDB file for
crabpi differs from the numbering we have used. The model structure begins at M1 whereas
the experimental structure begins one residue later, at P1. The first methionine is probably

not present in the protein expressed in F. coli.
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(edn; 134 residues [66]) from H. sapiens, were built. We divide the modelling
into three main stages: () an alignment mapping the sequence of the target
protein on to a template or parent structure, (i) procedures for assigning side
chain positions (rotamers) in the context of the surrounding model, and (%)
procedures for building regions of main chain. For each stage we indicate what
methods were used, what went right, what went wrong, and why (if we think
we know). In the last section we discuss what we learned and what type of next

generation algorithms may lead to improved model accuracy.

2.2 Methods

2.2.1 Search for parent sequences with known structure

Target protein sequences were obtained from the National Center of Biotechnol-
ogy Information (NCBI) protein and nucleotide sequence database Entrez [67].
A search using the program FASTA [68] was performed on the Owl database
[67] to obtain sequences that were related to the target protein. The Structural
Classification of Proteins (SCOP) [30, 69] database was used to find the PDB
identifiers for the known structures that belonged to the same family as the

target sequence.

2.2.2 Sequence and structure alignment

A multiple sequence alignment was generated with the Alignment of Multiple
Protein Sequences (AMPS) package [70, 71]. The AMPS-derived alignment
was used to identify regions of variability within the target sequence family.

AMPS pairwise alignments were also used to determine the degree of identity

14



between the target sequences and the other sequences of known structure. The
default PAM250 mutation matrix, which contains information about frequencies
of amino acid substitutions in evolutionarily-related proteins, was used to score
alignments between the target and parent sequences and select the one with the
best score. A length-independent gap penalty of 8.0 was used to limit the toler-
ance for introducing and lengthing insertions and deletions made in the sequence
alignment. Structural alignments between the template structures were gener-
ated using the G program [72] based on the alignment procedure of [73]. These
alignments were used to examine the structural variation at a given position and

to assess the correctness of the multiple sequence alignment.

2.2.3 Building side chains

Following the sequence alignment, an initial model was generated by mutating
the residues of the template structure with the highest identity to the target
sequence. This was done using a minimum perturbation (MP) technique imple-
mented by the program MUTATE [74]. The MP method changes a given amino
acid to the target amino acid preserving the equivalent y angles, as determined
by an equivalence table, between the two side chains. The y angles not present
in the model are constructed using a standard library based on the residue type.
A careful environment analysis was performed by visual inspection of the initial
model using interactive computer graphics. If residue A in a template structure
was changed to residue B in the model, then the environments (the contacting
residues, their locations, and conservation) of residue A and residue B were com-
pared. The rules used to consider plausibility were packing (whether there was

too much or too little space left after any change), favourable and unfavourable
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electrostatic interactions (hydrogen bonding, salt bridges) of side chains and
main chain, and burial or exposure of a residue. The confidence of the model
at a given position was rated qualitatively using these criteria. Alternate side
chain rotamer choices were considered for regions of low confidence.

Two other methods using different x libraries were employed in order to gen-
erate possible alternative rotamers. These were from the INSIGHT [75] and
QUANTA [76] packages. In addition, a preliminary version of a self-consistent
domain (SCD) method [77] was used. This method iteratively adjusts side
chain conformations within a neighbourhood to find the electrostatically most
favourable clash free set, and checks for consistency with adjacent and overlap-
ping neighbourhoods.

An electrostatic energy analysis using point charge electrostatics with an in-
tergroup cutoff distance of 5.0A was performed on the model using the ENEANA
program [78]. Residues with unfavourable electrostatic interactions were cor-
rected by examining alternative residue conformations and selecting an energet-
ically favourable one. Residues with unlikely burial were identified by checking
the probability of observing that particular burial in an experimental protein

structure and similarly corrected.

2.2.4 Building insertions and deletions

Insertions and regions flanking the deletion in the target sequences relative to
the templates were rebuilt using one of four different methods (Table 2.4).

In hpr, a lengthening of the C-terminal region compared with the primary
template from B. subtilis appeared to enable the formation of an additional short

anti-parallel S-strand to pair with the N terminal strand. These residues (87-89)
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were rebuilt manually.

In crabpi, the main chain for residues 34-37 was manually adjusted to extend
the C terminus of the second « helix. For residues 90-92 in crabpi, loops that
had the same structural pattern as the region of uncertainty (two strands with a
three residue loop between them with glutamatic acid as the centre residue of the
loop) were obtained from a database of structures. A manual inspection of these
loops was used to select the most appropriate one, which are residues 320-322 in
a; anti-chymotrypsin (PDB code 2ach-A [79]). Residues 101-106 in crabpi were
built using the SCD loop building program [55]. This method systematically
generates a large set of possible main chain and side chain conformations. In
this instance, too many main chain possibilities were generated, and therefore a
subset had to be chosen by manual inspection.

Residues 1-5 in edn were built using ab initio methods described in [80] which
predicted this set of residues to be partly helical. Residues 18-22 represent a
deletion in edn with respect to the 7rsa template. This region was constructed
manually using lonc as a template (which results in a deletion of only 2 residues,
as opposed to a deletion of 6 residues when 7rsa is used) and further refined
using CONGEN [54, 56]. In this procedure, each side chain in the loop and
its surroundings is spun in turn to find the lowest energy conformation. The
process is iterated until the total energy has converged. For the other three
loops in edn (residues 62-70, 89-96, and 112-126), distance constraints from the
parent structure were used to search a database of loops [57] for matching regions.
The matching loops were positioned in the model structure using the method

of Martin, et. al. [57]. Side chains were then rebuilt as described above using

CONGEN [54, 56].
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2.2.5 Building other regions of main chain variation

For some regions, we suspected that the main chain would not faithfully follow
the primary template after a preliminary environmental analysis. We built main
chains for those regions by explicitly copying them from other parent structures.
In the case of hpr, we copied the main chain for residues 51-55 from 1poh. In the
case of crabpi, residues 1-10, 46-52 and 116-118 were copied from a secondary

template, lopa-A.

2.2.6 Model refinement

Once the final side chain rotamers and loop conformations were selected from the
variety of choices available, the models were energy minimised for 100 steps using
the steepest descent method and either the CHARMM or DISCOVER potentials
without electrostatics [76, 75]. This procedure was intended to remove steric
clashes and to produce acceptable bond lengths and angles rather than change

the conformation significantly.

2.2.7 Calculation of RMSDs between the model and ex-

perimental structures

Throughout this work, the RMSD between two structures with n equivalent

positions is defined as

ity dof + dyf + d=}

n

, (2.1)

where dz;, dy; and dz; are distances in Cartesian space between two structures at
position .. RMSDs were computed using the program G [72] and represent global

RMSDs (i.e., RMSDs listed for specific regions are calculated after optimally
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Structure Source Function Sequence Resolution  Reference

(PDB code) identity  (A)

(%)
Histidine-containing phosphocarrier protein - hpr
2hpr B. subtilis phosphotransferase 40.9 2.0 [81]
1ptf S. faecalis phosphotransferase 40.2 1.6 [82]
1poh E. coli phosphotransferase 34.1 2.0 [83]
Cellular retinoic acid binding protein I - crabpi
2hmb H. sapiens heart fatty acid binding 42.7 2.1 [84]
lopa R. rattus retinol transport 36.6 1.9 [85]
1lie M. musculus  adipocyte lipid binding 34.6 1.6 [86]
2ifb R. rattus intestinal fatty acid binding  29.0 2.0 [87]
1mdc M. sexta fatty acid binding 23.8 1.6 [88]
Eosinophil derived neurotoxin - edn
7rsa B. taurus pancreatic ribonuclease 33.9 1.3 [89]
1bsr-A B. taurus seminal ribonuclease 31.4 1.9 [90]
lonc R. pipiens pancreatic ribonuclease 29.4 1.6 [91]

Table 2.1: Percentage sequence identity between the target sequence and other
homologous sequences with known structures as determined by AMPS pairwise
alignments for CASP1 targets. For each target, details regarding the known
homologs are given.

superimposing the complete molecules [73]).

2.3 Results

2.3.1 Template structures for modelling

Once the related sequences for each target were found, high resolution parent
structures obtained using x-ray crystallography were used as template structures
for the modelling. Table 2.1 shows the parent structures that were selected for

each family and the percentage identity to the target protein sequence.

2.3.2 Sequence alignment

Visual inspection of the initial AMPS alignments revealed two regions where the
alignment was dubious (see Figure 2.1). One of the regions is in crabpi (insertion

at residue 90 which is not seen in the AMPS alignment), and the other is in edn
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88 105 1 16
I | I
2hmb—final LDG-GKLV HLQKW---DG 7rsa-final  —————- KETAAAKFERQHM

I Ll [
CRABPI ~ WENENKIH CTQTLLEGDG EDN ——-KPPQAWAQWFETQHI
I I |
2hmb-AMPS LDGGKLVHQKW----DG 7rsa-AMPS  KETAAAKIEERQHMDSSTAA

Figure 2.1: Differences between the final correct sequence alignments and those
generated with AMPS. Correct alignments were produced by visual inspection
of the sequences and preliminary models.

(the FEQTH sequence (residues 11-15) is aligned incorrectly). The incorrect
alignment in crabpi results in K93 being buried, which seemed electrostatically
intolerable. In the case of edn, inspection of the alignment suggested a better
alternative. Both alignments were adjusted manually. The final alignments for
all proteins agree with those produced by structural superposition of the target
experimental structures with the respective primary templates. Figure 2.2 shows
the results of the sequence alignment for crabpi after correction using structural

information.
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wrong rotamers 010 001 021210111021030 0001022011010000202 0202100110112010113 1020102100

rotamer SSSS so0o0 osogshshhhssshs  hhhsssshshh****hhhq sghsoooososshhsshss  shhhihhshs
error main 110 000 000101000010011 1112122001104652101 1100001100000001110 0001111101
mainchain 0000 000 ooohhhohhhhhhhh hhhhhhhhhhh***hhhh  hhhhooooooohhhhhhhh hhhhhhhhhh

1 10 20 30 40 50 6 0 70

| | | | | | | |
CRABPI MPN FAGT-WKRSSENFELLKALGVMMIRKVA/AAMASKPHVE RQDGRFYIKTS TTVRTTEI NFKVGE
2hmb VDA FLGT-WH VDSKNFIDYNKSLGVGFATRQVA-—SMTKPTTI | EKNGOLTL KTHSTFKNTEI SFKLGV
lopa-A TKDQ ~ ~ NGT-VEMESNENFEGYMKBDIDFATRK A-——VRLTQTKII VQDGINFKTKTNSTFRNYDLIFTVGY
1lie CDA ~ FVGTWHKVSSENFIDYMKEGVGFATRKVA—GMAPNMII SVNGOLVTI RSESTFKNTEI SFKLGV
2ifb —-—A T FDGT-WR/DRNENY EKFMEK@ NVVKRKLG——-AHDNLKLT TQEGNKFTVKESSNFRNIDVVFELGY
1mdc -—sy LGKVYSLVK@NFOGFLKSALL SDDKIQAL—-VSIXKPTQKMEASSY SNTSTGGGGAKTHISSGY

wrong rotamers 0011 10000 220 211010312  2112000002202001110 1121021102011000 1 0000010122

rotamer shsh shshs hhs shsshss** *gsssshsh******hhso shhhssoshhhhqgsss s shhhhshssh
error main 1111 34522 000 011110224 5011110014365442110 1111111000111100 1 1100000001
mainchain  hhhh hhhhh hhh hhhhhoh**  *hhhhhhhh*****hhho  hhhhhooohhhhhhhh h  hhhhhhhhhh
71 80 90 100 1 10 120 130
| | | | | | |
CRABPI G FEEETVDG-RKC-RSLPTWEENKIH CTQTLLEGDGPKTYWIRELANDELILT FGAD-DVVCTRIWRE
2hmb E FDETTADD-RKV-KSIV TLDG-&LVHLQKW---DGETTLVRELIDGKLILT LTHG--TA/CTRTYEKE
lopa-A E  FDEHTKGLDGRNVKTIMVE-NTLVEVQKG---EKENRBKQWVERKL YLELTCG--DQVORQVFKKK
1lie E " FDEiI TADD-RKV—KSIT TLDG-GALVQRKW-——DGSTTIK RKRDEKLVVECVMK——GTSTRVYERA
2ifb D "FAYSLADGTEL-TGTWMEG-NK. VGKFKRVD-SKELIAVRASGNELI QTYTYE--®EAKRI FKKE

1mdc EFDD VIGAG-DSV-KSMWDGAVVTHVVKG——-BAGVATFKEYNG@DLVVTITSSNWDBARRYYKAA

Figure 2.2: Final alignments of the cellular retinoic acid binding protein I
(crabpi) target sequence to other sequences in the family that have known struc-
tures. The first line indicates the accuracy of the predicted rotamer by listing the
number of y angles that deviated more than 30° from the experimental structure
for each residue. The second line is the list of rotamer choices that were used to
generate the final model—for each residue, the rotamer was selected using one
of the following methods: s - standard library; 1 - INSIGHT; q - QUANTA; or
by selecting from a template structure: h - 2hmb; o - lopa-A. The third line lists
the C, deviation between the target experimental structure and the model (0:
0-1A; 1: 1-24; ... ). The fourth line indicates the parent structure from which
the main chain was taken: o - lopa-A; h - 2hmb. An “*’ indicates that the main
chain and/or side chain was generated using loop building techniques. In the
multiple sequence alignment, conserved residues are indicated by bold letters.
For each amino acid in all the sequences aligned to the target, the C, distance
between the target experimental structure and each related structure after struc-
tural alignment is given: a solid line under the one letter code indicates that the
C, distance was within 1.0 A, a dotted line indicates that the C, distance was
within 2.0 A, and a blank indicates that the C, distance was greater than 2.0 A.

21



All side chains “No excuse” side chains

Rotamer  hpr crabpi edn hpr crabpi edn
Origin

Tibrary  50.0% (60)  48.0% (100) 50.5% (95)  25.0% (8)  50.0% (6)  37.5% (24)
Tdentity — 34.7% (46)  38.0% (84)  25.0% (48)  26.6% (15) 37.5%(8)  24.2% (33)
Loops 80.0% (5) 66.6% (15)  66.6% (75)  50.0% (2)  00.0% (0)  73.6% (19)
Manual ~ 65.5% (29)  41.1% (34)  00.0% (5) 50.0% (2)  33.3% (3)  00.0% (5)
All 48.5% (142)  45.4% (233) 49.3% (223) 29.6% (27) 41.1% (17) 38.2% (81)

Table 2.2: Percentage of model x angles that deviate more than 30° from the
experimental structure, considering rotamers that were constructed using a stan-
dard library (row 1), identities (row 2), loop builders (row 3), and by other
methods (row 4; see Figure 2.2). The overall percentages are given in the last
line. The “no excuse” set on the right hand side omits residues that have crys-
tallographic contacts closer than 4.0 A to a neighbouring protein molecule and
X angles where one or more atoms have a temperature factor greater than 25.0
A?. The numbers in parenthesis show the total number of y angles that were
included.

2.3.3 Side chains

The percentage of model x angles that deviated more than 30° from those in the
experimental structures is given in the left hand side of Table 2.2. A number of
x values may be affected because of high temperature factors or contacts with
neighbouring molecules in the crystal structure. For the purpose of evaluating
the methods used, it is desirable to eliminate these effects and produce a “no ex-
cuse” set of y angles. We thus calculated additional statistics, excluding residues
that have atomic contacts of less than 4.0 A to a neighbouring molecule and y
angles where one or more atoms had a temperature factor greater than 25.0 A2,
The right hand side of Table 2.2 shows these results. Errors are significantly
lower in this set, but still surprisingly large, even for cases where the residues in
the models and template structures are identical (row 2).

Changes in the position of conserved side chains between related structures
must be because of changes in other parts of the structure. To obtain more

insight into these correlation effects and others, we examined the seven cases
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(three Library, three Identity, and one Manual) in the “no excuse” set of the
crabpi model where the x values are incorrectly predicted. This was done by
introducing the model rotamers into the experimental target structure and in-
specting the resulting environment. Table 2.3 shows the results of this analysis.
For three of the seven rotamers, the model rotamers were not acceptable in the
experimental structure because of clashes that are not present in the model.
For two of these, the clashes are directly attributable to main chain differences
between the experimental structure and model, so better side chain positioning
algorithms would not help. Figure 2.3 illustrates one of these main chain effects
for I53. Here, a difference in the main chain in the target structure relative to
the template of the neighbouring 164 results in the model rotamer being un-
acceptable. The side chain conformation of the conserved 164 in the model is
similar to that seen in the experimental structure. There is also a side chain
clash between the model conformation of 153 and the experimental conforma-
tion of R112. Similarly, the side chain conformation of F123 is determined by
the conformation of a loop region that was incorrectly modelled. The side chain
conformation of 1133 is dependent on the conformation of the side chain of R11,
which forms a salt bridge with E118 in the experimental structure, but not in
the model. The experimental conformation of R112 appears to interact better
with solvent than the model conformation. For the other three cases, our criteria

could not distinguish between the experimental and model rotamers.
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X Residue Ay Effect of using the rotamer

angle (°)  in the experimental structure

X1 153 66  clash with 164 and R112 (see Figure 2.3)

X3 R112 74  incompatible with experimental solvent structure
X1 1120 34 no clashes

X2 1120 125 no clashes

X2 F123 45  clash with L121 and V77;

V77 is in an incorrectly modelled loop
X1 1133 149 clash with R11 and S12;

these residues have high temperature factors
X1 V135 66  no clashes

Table 2.3: Correlation of individual x angle errors with other errors in the cellular
retinoic acid binding protein I (crabpi) model. Data are for the incorrect angles
in the right hand side of Table 2.2. For each x listed, the conformation of the
corresponding residue in the experimental structure was changed to adopt the
model y value and the resulting environment inspected for inconsistencies.
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R112

Figure 2.3: An example of a incorrect model rotamer in the cellular retinoic
acid binding protein I (crabpi) that is unacceptable given the context of the
experimental structure. The model structure is white, the experimental structure
is black, and the model side chain of I53 placed in the experimental structure
is grey. In the model, 164 is further away because of a main chain shift, so the
principal clash excluding the 153 model side chain conformation is not present.
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Region RMSD Max root Method Intermolecular <B>

(A) error (A) contacts (A?)
hpr
87-89 5.5 0.6 manual 88-89 29.6
crabpi
34-37 5.0 2.8 manual 37 32.7
90-92 4.2 2.0 pattern matching - 39.0
101-106 5.3 2.2 systematic search [55] - 80.0
edn
1-5 9.7 3.3 ab initio [80] 3-5 13.3
18-22 5.3 3.4 manual & CONGEN [54, 56] 19,21 8.7
62-70 3.1 1.2 database [57] 66-67,69 22.9
89-96 5.2 6.1 database [57] 90-91,95 37.1
112-126 9.9 7.1 database [57] 113-114,116-117 15.9

122,124-125

Table 2.4: C, RMSDs between the experimental structure and the model for
insertions and residues flanking the single deletion (edn: 18-22). The larger of
the two root C, atom errors is given in column 4. For each region, the list of
residues with at least one atom in the side chain having intermolecular contacts

less than 4.0 A is given in column 6. Column 7 lists the average temperature
factor (B) for the C, atoms.

2.3.4 Insertions and deletions

All of the regions representing insertions and deletions have final conformations
with C, RMSDs greater than 4.0 A (Table 2.4).

In hpr, residues 87-89 were rebuilt manually. However, in the experimental
structure, this region turns away from the protein surface with the last two
residues involved in an intermolecular contact. Thus this conformation could be
the result of a crystal packing effect.

In crabpi, the main chain for residues 34-37 does indeed adopt the confor-
mation of an helix as we had guessed, but since the adjustment was manual, the
shape of the helix is far from ideal. Experimental errors make it hard to assess
what the cause of a mis-prediction of a loop is, especially in the other two cases

of loop building (residues 90-92 and 101-106), since all the loops in the crabpi
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structure have atoms with large temperature factors (Table 2.4).

Residues 1-5 in edn were built as a helix, whereas the correct conformation
in this region resembles a turn. Table 2.4 shows that all the loops in edn have
contacts with neighbouring protein molecules. This factor cannot be taken in
account in the modelling.

The errors in the positions of the root residues (i.e., residues flanking regions
insertions or deletions) shown in Table 2.4 are large (up to 7.0A) for many of the
loops, and indicates one reason as to why the loop conformations are so poor. In
such cases, the region rebuilt was not large enough and therefore no low RMSD

loops could possibly be generated.

2.3.5 Other regions of main chain variation

Comparison of the experimental target structures with the primary templates
used in the modelling shows other regions where the main chain conformations
are significantly different. We list those regions that have a C, RMSD greater
than 3.0 A in crabpi and edn and 1.0 A in hpr, or regions where we explicitly
changed the main chain from the primary template (Table 2.5).

Three such regions in crabpi, residues 1-10, 46-52 and 116-118, were predicted
with acceptable accuracy by using lopa-A as a template rather than 2hmb. The
changes in the conformation between crabpi and 2hmb of the N terminus and
the hairpin around residue 49 are correlated (Figure 2.4), and appear to be the
consequence of a set of side chain differences: Two residues (F51L, W88L) are
more bulky in crabpi and there is a loss of a salt bridge between residues 2
and 46. For the third region, there is a glycine in 2hmb at position 117 with

¢/ values not allowed for other residue types. In crabpi and lopa-A, there is
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Region RMSD to primary RMSD to Intermolecular <B>

template (A) model (A) contacts (A?)
hpr
39 1.9 1.8 39 23.6
14-17 1.5 1.5 14,17 19.1
51-55 0.7 1.3 51-52,54-55 17.9
70-83 0.5 1.0 71-72,75-76,78-79 18.2
crabpi
1-10 1.4 0.8 9-10 40.7
46-52 4.1 1.1 46,49 39.3
75-80 3.2 3.1 - 37.8
116-118 2.3 1.4 - 53.1
edn
30-34 5.1 5.1 33,34 10.8
58 4.1 3.9 58 11.37

Table 2.5: C, RMSDs for other regions of main chain variation. The RMSDs
to the primary template shows how much that main chain differs from the ex-
perimental structure and the RMSDs to the model shows how accurately the
variation was predicted. Three regions in crabpi were predicted well. The list of
residues with at least one atom having intermolecular contacts less than 4.0 A
is given in column 4. Column 5 lists the average temperature factor (B) for the
C, atoms.

an aspartate here. These and other side chains in the core of crabpi are more
similar to lopa-A than those in 2hmb, even though the overall sequence identity
is significantly lower.

All other regions of main chain variability that do not involve insertions and
deletions were not identified and thus incorrectly modelled. With the wisdom
of hindsight, some of these can be understood: In hpr, the region around 14-
17 appears to shift from the template because of the presence of a salt bridge
between H15 and D10 (see Figure 1.2). E39 has a sterically strained ¢/t pair
(93°,3°), and such conformational strain outside of functional regions is rare [92].

In this case it is almost certainly due to contacts with a neighbouring molecule

in the crystal [63]. In crabpi, the loop around 75-80 appears to move relative to
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P2

A5
R45 Y52

Figure 2.4: Correlated changes between the N terminus and the loop around
residues 46-52 in the cellular retinoic acid binding protein I (crabpi; shown in
black) compared with 2hmb (white), the closest homolog. In lopa-A, the confor-
mation is similar to that of crabpi, providing a better template than the primary
one of 2hmb. Correlated changes of this type are common, and such regions of
main chain often cannot be modelled independently.

2hmb because of the V77—A and L77—Y changes, a main chain shift of about
1.0 A at positions 20-25, and the loss of a salt bridge between residues R59K
and D78G. In edn, the change around residues 30-34 relative to 7rsa may be due
to Y33T causing a clash with the conserved Y98.

Two changes in main chain were wrongly introduced. In one of these, residues
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Target C, RMSD All-atom RMSD
(A) (A)

hpr 1.18 (88)  1.76 (644)

crabpi  2.01 (136) 2.62 (1087)

edn 4.55 (134) 5.50 (1079)

Table 2.6: Accuracy of the models that were built compared to the experimental
structures for CASP2 targets. The C, and all-atom RMSDs between the model
and the experimental structures are given. The numbers listed in parenthesis
are the number of atoms considered for all residues.

51-55 in hpr, we incorrectly supposed that side chain volume changes would cause
a main chain shift seen in one of the other templates. In the other case, the last
helix in hpr (residues 70-83) shifts as a consequence of energy minimization done

to accommodate the incorrectly built C terminus.

2.3.6 Model refinement

After energy minimization, the C, root mean square deviation (RMSD) between
the model and experimental structure increased slightly. For hpr, the increase of
the C, RMSD between the minimised and the unminimised model with respect
to the experimental structure is 0.070 A, for crabpi it is 0.014 A, and for edn it

is 0.021 A.

2.3.7 Overall accuracies of the model compared to the

experimental structure

Table 2.6 lists the RMSDs for all residues for the three models.
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2.4 Discussion

The accuracy of the models is very unsatisfactory but the modelling experiment
has been educational. Three common themes have emerged: The first is the
usefulness of visual inspection rather than a reliance on numerical algorithms.
The second is the extraordinary interconnectedness of changes between different
homologous proteins. The third is the possibility, in some cases, of devising

automatic procedures that may significantly improve accuracy.

2.4.1 Alignment

It has been known for some time that alignment of sequences with less than 40%
identity tends to produce frequent errors in the mapping of a sequence onto a
template structure [64, 93]. This is because the signal used in a mutation matrix
is not strong enough to distinguish the correct structure-based alignment from
other incorrect alignments. We encountered two cases of that (Figure 2.1). In
one, inspection of the alignment at the amino acid sequence level suggested a
better solution. In the other, inspection of the structural implications of the
alignment allowed a correction. With these adjustments, the sequences of all
three models were correctly aligned with the available template structures. It
should be possible to develop algorithms that examine the structural implications

of alternative alignments.

2.4.2 Selecting side chain rotamers

Inspection of the structural implications of default rotamer choices did lead to

a small improvement in accuracy, but the error level is still very high, even for
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those residues not likely to be affected by crystal packing or high crystallographic
temperature factors. Better methods based on consideration of interacting sets
of side chains are clearly needed. Such algorithms have been published, with
reported high accuracy in core regions [94, 95, 96]. However, from the analysis
of the crabpi errors (Table 2.3), it is clear that these algorithms will be seriously

affected by the main chain inaccuracies present in real models.

2.4.3 Insertions and deletions

Several algorithms [54, 55, 56, 57] have been shown to produce usefully accurate
structures of short stretches of chain in the context of the surrounding protein.
There are four obvious explanations as to why they did not work here, all related
to the difference between real modelling versus algorithm development tests. The
first, and in the long run most difficult to address, is the interconnectedness of
the differences between related protein structures. An example of this is the
interaction between the N terminal region of edn relative to ribonuclease A and
the long insertion at residues 112-126. These two regions pack against each
other in the experimental structure, so that predicting one in isolation from the
other is likely to be very problematic (Figure 2.5). Spotting these correlated
changes can some times provide the key to modelling, as in the case involving
the N terminus of crabpi and the conformation of the loop around residues 46-
52 (Figure 2.4). More often than not, they simply render any automatic loop
builder useless. Table 2.7 shows the striking extent of the interconnectedness
between the variable regions in the experimental structures.

A second and related problem is the one of the size of variable region that

must be included. Both systematic and database searches are severely limited
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D112

Figure 2.5: An example of an error in the building of one main chain region
excluding the selection of the correct conformation of another region for the
eosinophil derived neurotoxin (edn). Experimental structure of edn is black,
model is white. The incorrect structure of the model N terminus occupies space

needed for the loop 113-129 (shown in black).
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hpr 14-17 39 51-55 70-83 87-89

14-17 3
39
01-35 3
70-83 2
87-89 2
crabpi  1-10 34-37 46-52 75-80 90-92 101-106 116-118
1-10 2 4 3 2
34-37 2
46-52 4
75-80 4
90-92 3
101-106 4
116-118 2
edn 1-5 18-22 30-34 538 62-70 89-96 112-126
1-5 3 3
18-22
30-34 3 2
o8
62-70
89-96 2
112-126 3

Table 2.7: The interconnectedness of the insertions and deletions and other
regions of main chain variation. Theonumber of residue pairs that have more
than one atomic contact less than 4.0A is given.

in the size of region they can consider [59]. Effective maximum loop sizes are
probably currently about seven residues, ignoring any changes in the surround-
ings. The short rebuilt regions that we used resulted in large errors of the root
residues which led inevitably to high loop RMSDs (Table 2.4). It is apparent
that insertions and deletions often cause significant main chain adjustment in
the adjacent residues even where sequence conservation is high. The third prob-
lem is the need for reliable and affordable energy functions to screen possible

conformations. In no case were we able to do this because of time and comput-
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ing limitations. The fourth problem is knowing when to believe the reported
experimental structure is relevant to the modelling. In the case of hpr, we saw
one possible case of the crystal environment affecting the conformation around
the C terminus. For crabpi, all three loop regions have very large temperature
factors. In edn, the temperature factors are more reasonable, but all the loops
are involved in intermolecular interactions in the crystal (Table 2.4). While it is
very unlikely that in all cases the high RMSD between the experimental struc-
ture and the model are the result of the crystal effects, it does make it difficult

to assess the individual predictions.

2.4.4 Identification of regions of main chain variability

When there are insertions and deletions in the sequence alignment, it is obvious
that the local main chain conformation is unknown. But there are additional
regions of main chain variability that are less easy to identify (Table 2.5).

Examination of the structural variation within the family may be useful for
identifying such regions. For example, positions where the RMSD was greater
than the mean RMSD within the crabpi family (2hmb, 1lie, lopa-A, 2ifb, and
lmdc) were found to be residues 1-6, 37-40, 47-50, 58-64, 74-83, 89-91, 99-107,
116-118, 127, and 137. This would identify all regions of structural variation
listed in Table 2.5 but also would identify 3 additional regions that are conserved.
This analysis, together with consideration of two other factors, changes involving
glycine and proline residues and the level of local sequence similarity, may help
in identifying main chain changes.

As in the case of insertions and deletions, all the regions that vary extensively

in main chain conformation have high temperature factors or form intermolecular
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contacts (see Table 2.5). For example, the conformation around residue E39 in

hpr appears to be determined by crystal packing.

2.4.5 Choice of alternate templates

In the case of crabpi, we were able to significantly improve the model by recog-
nising lopa-A as a better choice for the main chain in three regions. Inspection
of Figure 2.2 reveals other regions where the prediction could have been im-
proved by choosing main chains from other related structures. For example, the
main chain around 108-115 and 128-137 in crabpi is better modelled by using
the main chain from lopa-A. These choices depend on structural details and are
difficult to automate. The usefulness of a “mix and match” approach to template

selection is well known [49].

2.4.6 Long term hopes

We can see the way ahead for improvements in sequence alignment, rotamer
choice and identification of main chain changes. Loop building is the most glar-
ing and seemingly intractable problem in these results. Its successful treatment
requires the development of methods for handling the interconnectedness of fea-
tures in protein structures. One partial solution may be to consider pieces of
chain that have their conformation determined essentially independently from
the rest of the protein structure [97]. An example of the relevance of that ap-
proach is the interaction between the N terminus of edn and the region 133-129.
Analysis of the surface accessibility of atoms in this region suggests that the N
terminus has its conformation determined by local sequence effects [80], so it

should be built first and then the long loop added.
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A complete solution to the comparative modelling problem, i.e., methods
rivalling experiment in accuracy, requires the development of radically new ap-
proaches that handle the interconnectedness of the structural changes between

related protein structures.

2.5 Summary

In this chapter, we test conventional comparative modelling methods by making
blind predictions of three proteins using a variety of computational methods,
heavily supplemented by visual inspection, for the first meeting on the Critical
Assessment of protein Structure Prediction methods (CASP1). We consider the
accuracy obtained to be worse than expected. A careful analysis of the models
shows that a major reason for the poor results is the interconnectedness of the
structural differences between the target proteins and the template structures
they were modelled from. Side chain conformations are often determined by de-
tails of the structure remote in the sequence, and can be influenced by relatively
small main chain changes. Almost all of the regions of substantial main chain
conformational change interact with at least one other such region, so that they
often cannot be modelled independently. Visual inspection is sometimes effective
in correcting errors in sequence alignment and in spotting when an alternative
template structure is more appropriate.

In the next chapters, we discuss the development of an all-atom distant-
dependent conditional probability discriminatory function, a graph-theoretic
method for sampling side chain conformations, and a method for building side

chains and main chains in a context-sensitive manner, and see how well the
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improvements in our methodology work at CASP2.
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Chapter 3

An all-atom distance-dependent
conditional probability discriminatory
function for protein structure

prediction

3.1 Introduction

Any algorithm that attempts to predict protein structure requires a discrimina-
tory function that can distinguish between correct and incorrect conformations.
These discriminatory functions can be extremely simple, like counting atomic
contacts in a given conformation, or could involve elaborate calculations to de-
termine the energy of an amino acid sequence conformation [98, 99, 100].

A class of discriminatory functions are knowledge-based. These functions
compile parameters from tendencies observed in a database of experimentally
determined protein structures [101, 102, 103, 104]. Knowledge-based discrimi-

natory functions have been used to validate experimentally determined protein
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structures [105, 106], to recognise the fold an amino acid sequence belongs to
without any sequence homology [107, 108, 109], and for ab initio protein struc-
ture prediction [110, 111].

Generally, knowledge-based discriminatory functions have used a simple one-
or two-point-per-residue representation. That is, they usually represent each
residue in a protein sequence with one or two positions in three-dimensional
space. Discrimination is based on each residue’s preference to be buried or ex-
posed, its preference for a particular secondary structure conformation, and its
preference to be in contact with other residues [102, 101, 103, 104]. However, to
capture the finer details of atom-atom interactions in proteins, a more detailed
representation is necessary [112]. For example, in a comparative modelling sce-
nario where two possible models can be extremely close (within 1-3 A in terms
of root mean square deviation (RMSD) of the C, atoms) to the experimentally
determined structures [8], we need all the information we can possibily obtain
from the two models to determine which one is more accurate. A one-point-per-
residue discriminatory function may not be able to discriminate as well as an
all-atom discriminatory function, which takes into account all the atoms on the
side chain of the residue. In the case of comparative modelling, building side
chains will not be possible using a simple representation. There exists a large
degree of interconnectedness between side chains and main chains, making such
a represention a necessity for the most accurate prediction (Chapter 2).

Our goal is to develop a discriminatory function that will work well at identi-
fying the best conformation from a set of incorrect or approximate conformations.
To accomplish this, we derive a pairwise distance-dependent all-atom conditional

probability discriminatory function that represents atom-atom preferences in a
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residue specific manner. We evaluate the performance of a discriminatory func-
tion by seeing how well it correctly identifies correct conformations of an amino
acid sequence from incorrect or approximate (decoy) conformations. We perform
this evaluation for a wide variety of decoy types. We compare this discrimina-
tory function to three more approximate representations to observe the effect of
decreasing detail in the representation. Two of the approximate representations
treat combinations of atoms as single “virtual atoms”. The third approximate
representation, a simple contact-based discriminatory function, is used to illus-
trate how much of the discriminatory information is obtained from compactness
alone. We discuss the implications of these results for protein structure predic-

tion and model refinement.

3.2 Methods

We will describe two formalisms here. The first computes the conditional proba-
bilities, and the second computes the Boltzmann free energies, of pairwise atom-
atom preferences in proteins using statistical observations of native structures.
We make the observation that these two formalisms are equivalent for all prac-
tical purposes. It is however more straight-forward to think of pairwise pref-
erences of atoms in proteins in terms of probabilities rather than in terms of
free energies: the Boltzmann formalism assumes an equilibrium distribution of
atom-atom preferences, the physical nature of the reference state in this formal-
ism is not clear, and the probability of observing a system in a given state in

this formalism must change with respect to the temperature.
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3.2.1 The conditional probability formalism

Given a set of known structures from the Brookhaven Protein Data Bank (PDB)
[113], we can make observations of atom-atom contacts in particular distance
bins. The bins are discrete distance ranges whose mid-point is represented by
the bin number. We compute the probability of observing atom type a and atom
type b in a particular distance bin d in a native conformation F, P(d.|F), like
so:

N(dap)

P(dw|F) = f(dw) = S N(da) (3.1)

Here N(du) is the number of observations of atom types a and b in a par-
ticular distance bin d. The denominator is the number of a-b contacts observed
for all distance bins. We assume that the frequency distributions obtained from
the database, f(du), here and elsewhere, represent the probabilities.

For example, if the number of lysine N¢ and glutamate Og; (KN -EOg)
contacts within a distance range of 4.0-5.0 A was found to be equal to 10 in the
data set, and the total number of KNEQy; contacts observed in all distance bins
was 100, the frequency of KN¢-EQs; contacts at distance bin 4.5 is 10/100 = 0.1.

Since we are dealing with observations of distances between pairs of atom
types in compact structures, which is a subset of the sample space of all dis-
tances, we need to define an appropriate reference state to compute the condi-
tional probabilities. We use a Bayesian approach to define the reference state
as a prior distribution of contacts between pairs of atom types in any compact
conformation, native or otherwise [114]. Our prior distribution is compiled from
a set of compact conformations to obtain specific information about preferences

between atom-types in the system. Using extended or random-coil conforma-
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tions for compilation of the prior distribution would result in preferences for
a pair of atom types to be close irrespective of the types, thus obscuring the
signal in the specific preferences [115]. We assume that averaging over different
atom types in experimental conformations is an adequate representation of the
random arrangements of these atom types in any compact conformation. We
approximate P(d,p), the probability of finding atom types a and b in a distance
bin d in any compact conformation, native or otherwise, to be equal to P(d),

the probability of seeing any two atom types in a distance bin d. P(dg) is thus

computed by averaging over all atom types a and b in the native conformations:

— Zab N(dab)
Ed Eab N(dﬂb)

Here, Y. N(da) refers to the total number of contacts between all pairs

P(dus) = P(d) = f(d) (3.2)

of atom types in a particular distance bin d, and the denominator is the total
number of contacts between all pairs of atom types summed over all the distance
bins d.

We require an expression for P(F|{d;;}), the probability of observing a cor-
rect conformation, F, given a specific set of n contacts between ¢ and j atoms
in the conformation {d;;}. Assuming that the individual probabilities are inde-

pendent of each other, we first write equations (3.1) and (3.2) as:

P({di;}|F) = ]] P(di;|F) (3.3)

n

and

P({d;;}) =[] P(d;;) (3.4)

n

By applying the conditional probability chain rule [114], we notice that:
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P(F|{di;}) - P({dij}) = P(F) - P({di;}|F) (3.5)

We rewrite equation (3.5) as:

P(F{d;}) = P(F)- % (3.6)

Expanding (3.6) gives us the expression for computing the conditional prob-

ability of seeing a native-like conformation F given a set of n observations, {d;;}:

P(di;|F)

P(FHdij}) = P(F) ' H P(di]‘)

n

(3.7)
More usefully, to perform the computation, we take the logarithm of both
sides to obtain the summation:

In P(F{d;;})=c+ > In % (3.8)

where ¢ is In P(F).

We initially set all values in the numerator in equation (3.1) to one, and
compile a table of the probability ratios on the right hand side (ignoring c,
which is a constant) by computing the frequencies for all pairs of atom types a
and b for all distance bins d using a set of experimental conformations. Given
an amino acid sequence conformation, we calculate all the distances between all
pairs of atom types and compute the conditional probability on the left hand
side by summing up the probability ratios assigned to each distance between a

pair of atom types.
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3.2.2 The potential of mean force

As in the above conditional probabilty formalism, the frequencies of distances
between atom types are calculated from a database of known structures available
from the PDB [113]. The observed frequencies are transformed using the inverse
of Boltzmann’s law to yield the free energy of the interaction, as a function
of some parameters (such as the distance between the atom types) [101, 103,
104]. Boltzmann’s law states that a particular state s of a physical system in
equilibrium is occupied with a probability P(s) which is related to the free energy
of that state AG(s):

AG(s)/kT

P(s) = S _AGE/MT

(3.9)

where k is Boltzmann’s constant, and T is the temperature. The logic used
to compute statistical potentials of mean force is that given the probabilities
(which can be computed from statistical observations), the free energies can be
calculated using the inverse of Boltzmann’s law [101].

Specifically, the free energy of interaction between atom types a and b in a

distance bin d is given, using the same notation in the previous section, by:

P(d|F)

AGY = —kT -1In
P(du)

(3.10)

The free energy for a given conformation, AG(C), is simply computed by

summing up the individual free energies of all n pairs of atom types:

~ Y AG] = T+ Y ln dw'? (3.11)

Assuming the same reference state, the expansions for P(d;;|F') and P(d,;) are
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the same as in equations (3.1) and (3.2) respectively. Thus, the above equation

can be related to equation (3.8) in the following manner:

AG(C)

1Il P(FHCZ,]}) = C—I— —kT

(3.12)

Ignoring the constants, ¢ and —kT', we see from equation (3.12) that the con-
ditional probability and the potential of mean force formalisms are functionally

equivalent.

3.2.3 The residue-specific all-atom probability discrim-

inatory function (RAPDF)

The conditional probabilities for the residue-specific all-atom probability discrim-
inatory function (RAPDF) are compiled from frequencies of contacts between
pairs of atom types in a database of protein structures. All non-hydrogen atoms
are considered, and the description of the atoms is residue specific, i.e., the C,
of an alanine is different from the C, of a glycine. This results in a total of 167
atom types. Contacts between atoms within a single residue are excluded from
the counts. We divide the distances observed into 1.0 A bins ranging from 3.0
A 10 20.0 A. Contacts between pairs of atom types in the 0.0-3.0 A range are
placed in a separate bin, resulting in total of 18 distance bins. Table 3.1 lists
the atom types used for this discriminatory function.

A table containing the negative log probabilities for all pairs of atom types
for all distances is compiled from a database of known structures using equation
(3.8). Given an amino acid sequence conformation, the probabilities of all con-

tacts between pairs of atom types with distances that fall within the distance
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C Ca C[D’ C5 C51 C52 Ce Cel C62 CES C’y C’yl
Cye CHy; C¢ Cg Cez N Ns1 Nsz N N, N NH;y
NH, Nee O O; Op Ou Os O, O, OH S; S,

Table 3.1: List of atom types used in the residue-specific all-atom probability
discriminatory function (RAPDF). Each of these atom types is prefixed by the
type of the residue (in one-letter code), resulting in 167 different atom types.

cutoff above are summed up to yield the total negative log conditional probabil-

ity of the conformation being correct. This procedure is used for all probability

discriminatory functions described in this chapter.

3.2.4 The residue-specific virtual-atom probability dis-

criminatory function (RVPDF)

The residue-specific virtual-atom probability discriminatory function (RVPDF)
uses a virtual atom approximation similar to the one developed by Head-Gordon
and Brooks [116]. This representation combines a group of atoms into a single
virtual atom type by averaging over the corresponding z, y, and z cartesian
coordinates of the individual atoms. Aside from labelling conventions, this rep-
resentation differs from the original representation in the determination of the
virtual centres for virtual atoms vNH and vOH (which are taken to be rep-
resented by the positions of the N and O atoms respectively, rather than the
geometric centres). The distance bins are the same as in the RAPDF. Each
of the virtual atom types is prefixed by the type of the residue, resulting in
105 different virtual atom types. Table 3.2 lists the virtual atoms used for this

discriminatory function and the combinations of atom types they represent.
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Virtual Components Present in

atom residue
vCO C+0 all
vNH1 N all
vNH2 Nso

vNH2 Neo

vNH2 NH;

vNH2 NH,

vNH3 N¢

vNHE Ns

vNHE Neo

vNHE Ne

vNHE Ne1

vCOS  C, + Oy
vCOS O 4+ O

vO0SC  C, + S5 + Cc
vCCC Cﬁ -|— 071 + 072
vOCC  C, + Cg + Cyy
vO3R  C + Cg + Cq
vC3R 052 + Ceg + C<
vO3R  C, + Cg + Cq
vC3R 052 + 062 + C<
vC3R Cso + Cez + Cg3
vC3R Ceg + C(g + CH2
vCOO  C, + Og + Oy
vCOO C(5 + Oa + Oe2

vOH 0,
vOH 01

vOH OH

vCC Cﬁ -|— 072
vCC Cy1 + Cg
ele Cs + Oy
vCC Cs + Ce
vCC C, + C;s
vCC Cﬁ -|— Cyg

vCCP  Cp + C,
vCCR  C, + Cy
vOCH  C. + Cgy

AP FOEACNETAIAA- " <300S g< <TI0 <ZOZENIERI IO Z

vSH S,
vCEl Cea

vC CC

vCH3  Cg

vCH2 Ca

vCH2  Cg C,D,E,FHLMN,QR,SWY

vCH2  C, E,Q

vCH2 O P

vCH Ca A,C,D.E,F,HIKIMNPQR,STVWY

Table 3.2: List of virtual atom types used in the residue-specific and non-residue-
specific virtual-atom probability discriminatory functions (RVPDF and NVPDF,
respectively). The table lists the virtual atom type, the atom types of the compo-
nents, and the residues it is present in (in one-letter code). Aside from labelling
conventions, this representation differs from the the one described in [116] in the
determination of the virtual centres for virtual atoms vNH and vOH (which are
taken to be represented by the positions of the N and O atoms respectively).
For the RVPDF, each of the virtual atoms is prefixed by the type of the residue
(in one-letter code), resulting in 105 different virtual atom types.
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3.2.5 The non-residue-specific virtual-atom probability

discriminatory function (NVPDF)

The non-residue-specific virtual-atom probability discriminatory function (NV-
PDF) differs from RVPDF only in that the virtual atom types are not residue-
specific. For example, all vC, atom types are considered the same, and all vCpg
atom types are considered the same, and so on. The total number of virtual

atom types considered under this approximation is 21.

3.2.6 The contact discriminatory function (CDF)

In the above three probability discriminatory functions (PDFs), the reference
state is compiled from a database of native conformations, i.e., it is a compact
reference state. It could be argued that the signal in these discriminatory func-
tions arises from the fact that what the functions are really measuring is non-
specific compactness and nothing more. That is, the discriminatory functions
penalise conformations that are not as compact as an experimental conformation
and are thus able to discriminate correct conformations from incorrect confor-
mations. Even if this were not the case, it would be interesting to examine how
well non-specific compactness alone can discriminate between correct and incor-
rect conformations relative to the three PDFs (RAPDF, RVPDF, and NVPDF)
described above [115]. To assess this, we use a simple contact discriminatory
function which assigns a negative log probability of -1.00 for every atom-atom
contact within 6.0 A in an amino acid sequence conformation, excluding contacts

within a single residue.
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3.2.7 The linearly interpolated residue-specific all-atom

probability discriminatory function (IRAPDF)

The three PDFs described above (RAPDF, RVPDF, NVPDF) use discrete bins,
to compile the conditional probabilities. This leads to a situation where, for
a given distance which falls anywhere within the range of a distance bin, the
negative log conditional probability of observing that distance between a pair of
atom types is the same. For example, if we encountered a distance of 5.1, 5.5, or
5.9 A for a particular pair of atom types, the magnitude of the probabilities will
be identical as all those distances fall into one discrete bin with a range of 5.0-6.0
A In reality, preferences between atom types must vary in a continuous manner
as the distances between the contacts vary. We thus evaluate the total negative
log conditional probability of an amino acid sequence conformation by linearly
interpolating between the negative log conditional probabilities for the discrete
bins to precisely determine the specific negative log conditional probability for a
given distance. To test the effect of using discrete distance bins, we evaluate all
the decoy sets using the linearly interpolated PDF (IRAPDF) to see how well it
performs compared to the RAPDF.

We determine the linearly interpolated conditional probability by assuming
that the mid-point of the distance bins represents the actual negative log con-
ditional probability for that distance, and that there is a linear relationship
between probability values observed for neighbouring bins.

Thus, if d, represents the actual distance encountered, and d; represents mid-
point of the closest distance bin value on the left hand side and d, represents
the mid-point of the closest distance bin value on the right hand side, then

I; represents the negative log conditional probability for d;, and I, represents
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the negative log conditional probability for d,. To find I,, the negative log

conditional probability for d,, we use the formula:

da_dl)
d, — d;

L=IL+(I-1I)- (3.13)

3.2.8 Low counts analysis

We have investigated the effect of finite counts used to define the frequences
required for a PDF (equation (3.8)), by introducing a simple model of count
variation. For each set of counts obtained from observations of particular pairs
of atom types in contact in the database in equations (3.1) and (3.2), we assume a
Gaussian distribution for variation in counts in repeated experiments and modify

the counts accordingly. The modified counts are obtained by the equation:

N=(_R-6.0)-0c+N (3.14)

Where N is the observed count value, N’ is the modified count value, >, R
represents the sum of m random numbers in the interval [0,1] (m = 12), and o
represents the standard deviation, assumed to be N1/,

For each pair of atom types examined, we generate 100 different sets of four
counts for the 18 distance bins using the above procedure, and compare the
corresponding conditional probabilities to the observed conditional probabilities
computed from the counts obtained from the database.

We compare contacts between two pairs of atom types, one where the counts
in equations (3.1) and (3.2) represent an average situation, and another where
the counts are among the lowest encountered in the database, to assess the effect

of sparse data on the conditional probabilities.

o1



3.2.9 Construction of the structure library for obtaining

conditional probabilities

Table 3.3 lists the PDB codes of the 265 structures that were used for compiling
the conditional probabilities for the discriminatory functions described above.
The PDB codes were initially obtained from the CATH database and are a
set of non-homologous (less than 30% sequence identity between any proteins
in the set) high-resolution (less than 3.0 A) x-ray structures [117]. Structures
with multiple side chain conformations have been modified such that only the
side chains conformation with atoms having the highest occupancy and lowest

temperature factors is used.

3.2.10 Decoy set generation

The decoy sets used were obtained from the Protein Potential Site (PROSTAR)
[118] and can be divided into two classes. Decoy sets in class I discriminate
between one correct and one or more incorrect or approximate conformations.
Decoys sets in class IT are a set of approximate conformations that vary in RMSD
to the experimental conformation, excluding the experimental conformation it-
self.

Table 3.4 lists the decoy sets in class I. The MISFOLD decoy set, generated by
Holm and Sander [119], consists of 25 examples of pairs of proteins with the same
number of residues in the chain, but different conformations. Sequences were
swapped between two different conformations, and side chain packing annealed
using a Monte Carlo process [119]. These provide inappropriate environments

for most of the side chains in the structures.
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1351 lcha 1gox loma  1tabl 2hpdA  3pgk
laaf lcauA  1gpb lomf  1ten 2ltnA 3pgm
laak ledb lgpr lovb 1tfi 2ltnB 3rubS
laba lede lhee 1pba 1tgl 2mev4d  3sc2A
laco ledg lhgeA  1lpda 1thg 2mnr 3sc2B
lacp lcewl lhgeB  1pdc 1tml 2msbA  4enl
ladd lembA  1hleA 1pfkA  1tnfA 2nckL  4fgf
ladn lcobA  1lhmy 1pgd 1tplA 20hxA  4gcr
lads 1colA lhoe 1pgx 1tpm 20vo 4htcl
lak3A  1coy 1hsbA  1pha 1ttaA 2pia 4mt2
lala lcpcA  1hstA  1phh 1ttf 2plv4 4sbvA
lalkA  1lcpt lhuw 1pii lula 2pmgA  4sgbl
laozA  lcsc lhyp 1pkp lutg 2polA  5fdl
lapa lcseE lifc 1plc 1vil 2reb 5p21
lapmE 1csel lipd lpoa lvsgA  2rhe 5pti
laps lctf lisuA lpoxA 1wsyA  2rn2 SrubA
larb 1d66A  1kst lppn lwsyB  2sicl HtimA
larqA  1dhr 1lab 1prcC  1xis 2sn3 6insE

latnA  1dmb et lprcH  1lycc 2sns TaatA
latr leca 11 lprcL  1ysaC  2stv TcatA
latx lede 1lis 1ptf lzaaC  2tgi Trsa
layh legf 1lla lpyaA 256bA  2tmdA 8abp

1bal letrL 1lmb3  1lpyaB 2aaiB 2tmvP  8fabB
1bbpA  lezm 11tsA 1pyp 2bbkH  2tsl 8rxnA
1bbtl  1fbaA  1ltsC lraiA  2bbkL  2tscA  9wgaA
1bbt2  1fc2D  1lyaA 1raiB  2bopA  2yhx

1bbt3  1fiaA 1lmat 1rcb 2bpal  3bbc

1bbt4  1fkb lmfaH 1rec 2bpa2  3bcl

1bds 1for lmfal,  1rfbA  2cas 3blm

lbgel  1fus lminA  1rhd 2cba 3cla

lbgc2  1fxd 1minB  1ribA  2cdv 3cts

1bgh 1gal lmypA lrip 2cmd 3dfr

1bha lgatA  1mypC 1rro 2¢cpl 3ebx

1bia 1gd10  1nar lrveA  2ctc 3ecaA

1blIE lgdhA  1nipA  1sbp 2ctvA  3gapA

1lbmvl 1gky 1noa 1shaA  2cyp 3grs

1bmv2 1glaG  1nrcA  1shg 2dnjA  3il8A

lbrnL.  1glt 1nrd 1sim 2er7E 3mdsA

1btc lgluA  1nscA  1sryA  2gstA  3monA

1bw3 1gof lofv 1stp 2hhmA  3monB

Table 3.3: List of PDB codes of the 265 protein chains used for compilation of
conditional probabilities. In cases where a single chain of the protein is used for
the compilation, the chain identifier is shown.
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The first conference on the critical assessment of protein structure prediction
methods (CASP1) produced a set of 42 comparative models of six different pro-
teins [8]. These form the CASP1 decoy set. The models vary in C, RMSD to
the corresponding experimental conformation, ranging from 0.53 A to 7.40 A,
depending on the difficulty of the model building process.

The IFU decoy set is a set of 44 peptides which are proposed to be indepen-
dent folding units as determined by local hydrophobic burial and experimental
evidence [97]. The set consists of the structure of the peptides as observed in the
complete experimental protein structure, and a conformation of the fragment
generated with a Genetic Algorithm and a physics-based potential of mean force
(120, 121].

The PDBERR decoy set consists of structures determined using x-ray crys-
tallography which where later found to contain errors, and the corresponding
corrected experimental conformations [118].

The SGPA decoy set consists of two conformations generated by molecu-
lar dynamics simulations starting with the S. griseus Protease A experimental
structure (PDB code 2sga) [122], and the 2sga experimental structure.

Among all the decoy sets referenced in this chapter, only the LOOP decoy set
belongs to class II. This decoy set consists of sets of conformations for short loops
(four or five residues) that were systematically generated using the methods in

[55, 59]. Table 3.5 gives details about each of the loops in the LOOP decoy set.

3.2.11 Decoy set evaluation

For class I decoys sets, the ratio of the negative log conditional probabilities

of the incorrect conformation and the correct conformation is determined. A
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Decoy set name Number of decoys C, RMSD range (A) Reference

MISFOLD 25 8.66 - 22.43 [51, 118]

CASP1 42 0.53 - 7.40 8, 118]

IFU 44 0.21 - 10.02 [97, 118, 121, 120]
PDBERR 3 0.81 - 13.21 [118]

SGPA 2 1.91 - 2.06 [118, 122]

Table 3.4: Class I decoys. The name used to identify the specific decoy set,
the number of decoys in the set, the C, RMSD range of the decoys to the
experimental structure, and the appropriate references are given.

# Protein Residue Sequence Number of All-atom RMSD

name  range conformations range (A)
1 3dfr 20-23 PWHL 394 0.75 - 4.58
2 3dfr 27-30 LHYF 1390 0.81 - 3.47
3 3dfr 64-68 HQED 71439 0.89 - 4.19
4 3dfr 120-124 GSFEG 474 0.57 - 2.91
5  3dfr 136-139 FTKV 10782 1.39 - 2.15
6 2sga 35-39 TNISA 15453 1.20 - 3.17
7 2sga 97-101  GSTTG 2079 0.60 - 3.34
8§  2sga 116-119  YGSS 26572 0.47 - 4.91
9 2sga 132-136 AQPGD 206 0.97 - 2.58
10 2fb; 265-269 HPDSG 393 0.96 - 3.90
11 2hfl 264-268 LPGSG 339 1.11 - 2.81

Table 3.5: Class II decoys. The LOOP decoy set is a set of loop conformations
that were systematically generated using the methods in [59, 55]. The name
of the protein from which the loop was taken, the range of the loop residues,
the sequence of the loop, the number of conformations, and the all-atom RMSD
range of the conformations is given. Further details of this decoy set are given

in [118].
discrimination ratio less than 1.0 (or log discrimination ratio less than 0.0) indi-
cates that the discriminatory function is able to correctly discriminate between
the correct conformation and the incorrect one. The lower the log discrimination
ratio, the more reliable the discrimination.

For class II decoy sets, the all-atom RMSD of the conformation with the

lowest negative log conditional probability among all the conformations is de-
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termined and is compared to the other RMSDs. The probability of choosing a
conformation with an equal or lower RMSD than the one selected by the dis-
criminatory function by chance is equal to the number of conformations that
have a lower RMSD divided by the the total number of conformations. Accurate
discrimination is defined to be the selection of a conformation with an all-atom
RMSD within 1.0 A of the lowest RMSD conformation present in the decoy set.

When appropriate, the percentage of decoys correctly discriminated is also
used to evaluate the performance of a discriminatory function on a decoy set.
Further details on the evaluation protocols and the decoy set generation are
given in [118].

For each decoy set evaluation, structures in the decoy set with the same
PDB codes were removed from the structure library and the probabilities were
recalculated, i.e., the procedure was jack-knifed or properly cross-validated to
ensure that information about a protein was not pre-included in the conditional

probability tables.

3.3 Results

3.3.1 The all-atom discriminatory function performs the

best across a wide variety of decoys

An ideal discriminatory function is one that correctly discriminates 100% of class
I decoys and selects conformations with low all-atom RMSDs (within 1.0 A of
the conformation with the lowest RMSDs) in the LOOP decoy set. In addi-
tion, the average discrimination ratios, which indicate the difference on average

between the negative log conditional probability for the correct and incorrect
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conformations in the decoy set, must be statistically significant.

The RAPDF comes close to achieving this goal, particularly in comparison
to the RVPDF and NVPDF. Figure 3.1a and Figure 3.1b show that the RAPDF
has the best average discrimination ratio and the largest percentage of decoys
correctly discriminated across a range of decoy sets. In the case of the MISFOLD,
PDBERR, and SGA decoy sets, it correctly discriminates 100% of the decoys
in the set. Further, the average discrimination ratios show that the negative
log conditional probabilities for the correct conformations in the MISFOLD,
PDBERR, and SGPA decoy set are on average lower (better) by 60%, 50% and
25% respectively, compared to the negative log conditional probabilties for the
incorrect conformations.

In the case of the CASP1 decoy set, the percentage of decoys correctly dis-
criminated by the RAPDF is 93%. The RAPDF performs slightly worse in
terms of the average discrimination ratio than two other discriminatory func-
tions in two specific instances (Figure 3.2, under nm23 and hpr), but this is due
to the fact that the approximate conformations in these cases are very close to
the experimental conformation, and the all-atom discriminatory function over-
whelmingly identifies these approximate conformations as being better than the
experimental one, thus skewing the average values. The difference, on average,
between the negative log conditional probabilities for the correct conformations
and the incorrect conformations for the RAPDF is 15%.

For the IFU decoy set, the percentage of conformations correctly discrimi-
nated by the RAPDF is 73%. The difference, on average, between the negative
log conditional probabilities for the correct conformations and the incorrect con-

formations for the RAPDF is 10%.
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Figure 3.1: Comparison of the performances of the residue-specific all-atom prob-
ability discriminatory function (RAPDF), the residue-specific virtual-atom prob-
ability discriminatory function (RVPDF), the non-residue-specific virtual-atom
probability discriminatory function (NVPDF), and the contact discriminatory
function (CDF) for class I decoy sets. The log of the average discrimination
ratios between incorrect and correct conformations (a) and percentage of de-
coys correctly discriminated (b) for the five decoy sets in class I is shown. The
lower the log average discrimination ratio in (a), the better the discrimination.
(b) shows the percentage of decoys that were accurately discriminated within a

decoy set.
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Figure 3.2: Comparison of the performances of the five discriminatory func-
tions (IRAPDF, RAPDF,RVPDF, NVPDF, and CDF) for selected decoys in
the CASP1 set. The log discrimination ratios between the experimental confor-
mation and the model is shown. The model with the lowest C, RMSD to the
corresponding experimental conformation is chosen from a given set of models
for this evaluation. The identifiers used to label the decoys are the same as in

[8].

It is less obvious which discriminatory functions perform best from the log
probability and all-atom RMSD data for the LOOP decoy set (Figure 3.3). How-
ever, if we examine the actual RMSD values, we note that for 10/11 loops (93%),
the RAPDF picks a conformation that is within 1.0 A of the lowest RMSD con-
formation in the sample space. RVPDF, NVPDF, and CDF have ratios of 5/11,

9/11, and 8/11 respectively.
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Figure 3.3: Comparison of the performances of the residue-specific all-atom prob-
ability discriminatory function (RAPDF), the residue-specific virtual-atom prob-
ability discriminatory function (RVPDF), the non-residue-specific virtual-atom
probability discriminatory function (NVPDF), and the contact discriminatory
function (CDF) for the LOOP decoy set. The all-atom RMSD (a) and log prob-
abilities of observing an equal or lower RMSD by chance (b) is shown. The loop
numbers in the horizontal axis corresponds to the numbers in Table 3.5, column

1.
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3.3.2 Discriminatory power decreases upon successive

approximations

There is generally a successive degradation of the signal going from the all-atom
discriminatory function to the CDF, as the description gets more and more
approximate (Figure 3.1). One major exception is the LOOP decoy set (Figure
3.3) where the NVPDF performs significantly better than the RVPDF. The other
exception can be noticed by examining Figure 3.1b, where the CDF does better
in terms of the percent correct discriminations than the NVPDF in the case of

the MISFOLD decoy set.

3.3.3 The compactness term alone is useful for discrimi-

nating between correct and incorrect conformations

The contribution of the compactness term, which is measured by the CDF, is
better than some of the other PDFs for certain decoy sets (Figure 3.1b under
MISFOLD, and Figure 3.3). Further, in a majority of the decoy sets, it is
adequate to distinguish between correct and incorrect conformations most of the

time (Figure 3.1b under PDBERR and SGA, and Figure 3.3).

3.3.4 Using a large distance cutoff helps in discrimination

As shown by the plot of the percentage of decoys correctly discriminated for
the decoy sets at different distance cutoffs (5.0 A, 10.0 A, 15.0 A, and 20.0 A)
(Figure 3.4), there is a significant advantage overall to using a larger distance
cutoff. A distance cutoff of at least 15.0 A is necessary to accurately discriminate

all the 25 decoys in the MISFOLD decoy set. In the cases of the PDBERR and
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Figure 3.4: Comparison of the performance of the residue-specific all-atom prob-
ability discriminatory function (RAPDF) at different cutoffs. The percentages
of structures correctly discriminated for six decoy sets at four different cutoffs is
shown. In the case of the LOOP decoy set, “correct” discrimination is defined
to be the selection of conformation that is within 1.0 A of the lowest all-atom
RMSD conformation for each loop.

SGPA decoy sets, it does not appear to make a difference which cutoff is chosen

in terms of percentage of decoys correctly discriminated.

3.3.5 Comparison of the contribution of electrostat

-ics and non-electrostatics terms

To determine the nature of the signal in the RAPDF, we partition the discrimina-
tory function according to contributions from electrostatic and non-electrostatic
contacts. Any four possible combinations of N and O atoms are defined to be
electrostatic in nature. All other contacts are considered non-electrostatic. Fig-

ure 3.5 compares the accuracy (by measuring the percentage of conformations
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Figure 3.5: Comparison of electrostatic, non-electrostatic, and combined terms
in the residue-specific all-atom probability discriminatory function (RAPDF).
The percentages of structures correctly discriminated for various decoy sets is
shown. In the case of the LOOP decoy set, “correct” discrimination is defined
to be the selection of conformation that is within 1.0 A of the lowest all-atom
RMSD conformation for each loop.

correctly discriminated) of using only the electrostatics and non-electrostatics
terms, relative to the combined PDF. Even though the non-electrostatic terms
alone are adequate for correct discrimination in most cases, the electrostatic
terms play a significant role in enhancing the signal. This is particularly notice-

able in the CASP1, IFU, and LOOP decoy sets where the combined signal leads

to discrimination of more decoys than the individual signals by themselves.

3.3.6 Linear interpolation improves discrimination

As shown in Figure 3.6, comparison between the IRAPDF and the RAPDF

shows that linear interpolation helps discrimination between correct and incor-
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Figure 3.6: Comparison of the residue-specific all-atom probability discrimi-
natory function (RAPDF) to the linearly-interpolated version of the RAPDF
(IRAPDF). For five of the decoy sets, the bars represent the log average of the
ratio of the probabilities between the correct and incorrect structures. For the
LOOP decoy set, the bars represent the log average of the probabilities of find-
ing at least one structure with a lower all-atom RMSD than the one with the
best discrimination by chance (i.e., the sum of log probabilities divided by the
number of loops).

rect conformations. This is most obvious in the LOOP decoy sets where the

improvement is quite dramatic, but for each decoy set there is some positive

improvement upon using the IRAPDF to evaluate the conformations.

3.3.7 The problem of sparse data for compilation of prob-
abilities is negligible

There are generally two sorts of problems in knowledge-based discriminatory
functions that arise from inadequate data that lead to errors in the conditional

probabilities. These can be illustrated best by examining the expression for the
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Term Minimum counts Average counts

N(dy;) 1 648

S N(dy;) 1525 11,708

>, N(di 1,011,903 9,143,295
S ¥ N(dij) 164,980,971 164,980,971

Table 3.6: Details of the raw counts obtained when compiling the conditional
probabilities (see the METHODS section for more detail on the compilation
process). For each term in equation (3.15), the minimum counts and the average
counts are given. Y.;3.,; N(d;;), the denominator in the expression for P(d;;) is
always a constant for any combination of 2 and j.

probability of seeing two atom types, ¢ and 7, in contact in distance bin d in a
correct conformation, P(d;;|F):
P(dij| F) N(dij)/ Ya N(dij)

PldslF) = P(dij) iy N(dij)] Za s N(dij) (3.15)

Detailed explanations for these terms is given in the METHODS section. To

begin our analysis, let us examine Table 3.6 for the nature of the raw counts
that we encounter in our observations for each of the four terms in the above
expression. Typically if the numerator in equation (3.15) has low counts for
both its terms, one can have significant differences in the probabilities due to
minor statistical fluctuations. For example, P(d;;|F), in such a situation, could
represent 1/2 or 2/2, and the difference in the probabilities is a factor of 2. This
situation never arises in our formalism because three of the four terms in the
equation (3.15) have large counts relative to the N(d;;) term, as shown in Table
3.6, column 2. This is because we do not partition our counts based on the
sequence separation and the directionality of the polypeptide chain [101, 112].
However, there could be problems due to errors in the counts of atom types
1 and j in a particular distance bin d. We analyse two atom-atom preferences,

cysteine N-tryptophan O (CN-WO) which represents a minimum counts situa-
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tion, and isoleucine C,-leucine Csy (IC,-LCjs2) which represent an average counts
situation. These pairs of atoms were selected for analysis based on the counts in
Table 3.6.

Figure 3.7 compares the effect of uncertain count values (generated using a
weighted random number generator, described in the METHODS section) on the
conditional probabilities for the preferences between two pairs of atom types. We
can see from the two plots that there is significantly more error in the conditional
probabilities for the worst case (CN-WO) than for the average case (IC,-LCss).
In the average case, the absolute error in the negative log conditional probability
when varying the individual counts randomly is typically less than 0.1 and has a
maximum value of about 1.0 (in the 0-3 A distance bin). In the worst case, the
absolute error in the negative log conditional probability is typically less than
0.5 and has a maximum value of about 1.0.

To compute the negative log conditional probability of a conformation, we
sum over a large number of probabilities at a large number (18) distance cutoffs
(up to 20.0 A) The error due to sparse data in the worst case situations is

mitigated by this summation of terms.
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Figure 3.7: Comparison of the effect of counting uncertainties on the conditional
probabilities for two pairs of atom types, cysteine N-tryptophan W (CN-WO),
where the counts are among the lowest in the database, and isoleucine C,-leucine
Cs2 (IC4-LCsz), where the counts are similar to the average counts in Table
3.6. The dashed line connects observed conditional probabilities and the points
around the dashed line represent the variation in the conditional probabilities due
to the uncertainty in the counts (see the METHODS section for the generation
of variation in the counts).
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3.3.8 Relationship between the conditional probabilities

and the nature of physical interactions in proteins

To examine the relationship between the conditional probabilities and the ener-
getics of atom-atom preferences in proteins, we select a set of atom pairs and
plot the RAPDF conditional probabilities for the 18 distance bins. The atom
pair probabilities are shown for all C,-C, and Cs-Cg pairs (Figure 3.8), all main
chain nitrogen-main chain oxygen (N-O) pairs and all main chain nitrogens to
the Os; atom in aspartic acid (N-DOy; ) pairs (Figure 3.9), alanine C,-alanine C,
(AC,-AC,), and valine C,-valine C, (VC,-VC,) pairs (Figure 3.10), and aspar-
tate N-lysine O (DN-KO) and proline N-tryptophan O (PN-WO) pairs (Figure
3.11).

Comparing the C,-C, to the C3-Cs curve (Figure 3.8) shows that the two
pronounced minima for C,-C, atom-atom contacts are in the 3.0-4.0 A and 5.0-
6.0 A distance bins, whereas the minimum for C3-Cp curve is in the 5.0-6.0 A
distance bin.

The C,-C, minimum in the 3.0-4.0 A bin is due to the presence of C,-C,
contacts between ¢,7 + 1 (neighbouring) residues. The C,-C, minimum in the
5.0-6.0 A bin is due to the presence of Co-Cy, contacts between i,7+2 and 7,7 + 3
residues in alpha-helices. The C3-Cs minimum in the 5.0-6.0 A occurs as a result
of the presence of C3-Cy contacts between 7,1 4 1 residues in both o-helices and
(-sheets. These observations are supported by counting the number of C,-C,
and Cg-Cg contacts in helices and sheets in a set of 100 proteins selected from
Table 3.3, taking into account the sequence separation, which shows that largest
counts fall into the bins with the minima. Likewise, the slight rise in the negative

log conditional probabilities in the 7.0-8.0 A bin in the C4-Cq plot and the slight
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Figure 3.8: Plot illustrating the conditional probabilities encountered in the 18
distance bins for all C,-C, contacts and all Cg-Cg contacts. For each pair of
atom types, the negative log conditional probabilities are plotted against the
18 distance bins. The spread at a given distance bin illustrates the differences
in probabilities for the various atom types within that bin. The average of the
negative log conditional probabilities for each bin is connected by the dashed
line.
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Figure 3.9: Plot illustrating the conditional probabilities encountered in the 18
distance bins for all N-O contacts and contacts between all main chain nitrogens
and aspartic acid Og;. For each pair of atom types, the negative log conditional
probabilities are plotted against the 18 distance bins. The spread at a given
distance bin illustrates the differences in probabilities for the various atom types
within that bin. The average of the negative log conditional probabilities for
each bin is connected by the dashed line.
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71



aspartate N-lysine O
5.0 ; ; ; ;

30r .

2.0

10 .

0.0

-1.0

-20 1 .

negative log condlitional probability

_3.0 I I I I I I I I I
3 5 7 9 11 13 15 17 19
bin distance (A)

proline N-tryptophan O
5.0 T T T T T T

4.0

30r .

201 .

1.0

0.0

-2.0

negative log condlitional probability

_3.0 I I I I I I I I I
3 5 7 9 11 13 15 17 19
bin distance (A)

Figure 3.11: Plots illustrating the conditional probabilities encountered in the
18 distance bins for apartate N-lysine O and proline N-tryptophan O contacts.
The negative log conditional probabilities are plotted against the 18 distance
bins.

72



rise in the negative log conditional probabilities in the 8.0-9.0 A bin in the Cs3-Cp
plot is because very few contacts occur in these distance ranges, particularly in
helices.

The large spread in the C,-C, and Cg-Cjs plots (Figure 3.8) in the 0.0-3.0
A distance bin is observed not because of variation in the number of contacts
between the atom types, but because of the variation in the counts when the
total over all distances for that pair of atom types is considered. That is, the
value Y4 N(d;;) in equation (3.15) is generally the only term that varies the most
during the computation of probabilities for this distance range. The denominator
in equation (3.15), corresponding to P(d,;), is fixed for a given distance bin and
a pair of atom types. The term N(d;;) is initialised to 1 for all values of ¢
and j before compilation of probabilities, and this is generally not incremented
except in the case of pairs of residues forming cis-pepides where the C, distance
between 7,7 + 1 residues is below 3.0 A. This is clearly reflected in the C4-Cq
plot: one of the largest negative log conditional probabilities (of 4.7) is observed
for AC,-AC, contacts in the 0.0-3.0 A bin, reflecting the tendency of alanine
residues to occur very frequently in proteins (the value for N(d; ;), where d < 3.0
A and 7 and j are alanine C, atoms, is 1 in the computation of this probability).
The smallest negative log conditional probability (of 0.57) is observed for PC,-
PC, contacts in the 0.0-3.0 AA bin, reflecting the tendency of proline residues
to be found in the ¢is conformation (the value for N(d; ;), where d < 3.0 A and
¢ and j are proline C, atoms, is 17 in the computation of this probability).

The extreme outliers in the N-O, C,-C,, C3-Cs plots in Figures 3.8 and
3.9 represent contacts between pairs of atom types in cysteine residues. These

probably reflect the tendency of cysteine residues to form disulphide bonds, thus
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constraining the choices of the other atom types. For example, in the C3-Cjs plot
(Figure 3.9) in the 3.0-4.0 A bin, the large negative log conditional probability
for C3-Cgs contacts between two cysteine resides reflects the distance between Cg
atom types of cysteines involved in disulphide bonds.

Comparing the N-O curve to the N-DOs; curve (Figure 3.9), we see that
it 1s main chain hydrogen bonding that is commonly observed, and there is a
smaller preference for main chain to side chain hydrogen bonding. However,
the spread of conditional probabilities is quite distinctive in the 0.0-3.0 A bin
in the N-DOyg; plot, clearly indicating differences in preferences for the main
chain nitrogen of various residues to form hydrogen bonds with aspartate Og;.
The highest negative log conditional probability observed is for proline nitrogen
and aspartate Og; contacts, and the lowest negative log conditional probability
observed is for asparagine nitrogen and aspartate O, contacts. This illustrates
the importance of separating the atoms based on the residue types.

The plots of AC,-AC,, and VC,-VC, contacts (Figure 3.10) illustrate the
differences in preferences for alanine and valine residues to be in a-helix and
(-sheet secondary structures. The preference for a pair of alanine C, atoms to
be within a distance bin of 5.0-6.0 A is significantly greater than the preference
for a pair of valine C, atoms to be within the same distance bin. This reflects
the preferences of alanine residues to occur frequently in a-helices (the distances
between C, atoms for 7,7+ 2 and ¢, 1+ 3 residues in a-helices generally fall in this
range), whereas the minimum in the VC,-VC, plot in the 6.0-7.0 A bin reflects
valine preferences for 3-sheets (the distances between C, atoms in 7,142 residues
in (-sheets fall in this range). The slight minimum in the VC,-VC, plot in the

10.0-11.0 A bin reflects C, contacts between i, 7 + 3 residues in (-sheets.
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The DN-KO and PN-WO plots (Figure 3.11) represent the lowest and highest
negative log conditional probabilities in the 0.0-3.0 A distance bin in the plot of
all N-O contacts (see Figure 3.9). Proline nitrogens generally have the highest
negative log conditional probabilities for contacts with other oxygen atoms, re-
flecting the fact that proline nitrogens lack a hydrogen atom and are thus unable
to form hydrogen bonds. DN-KO contacts have the lowest negative conditional
probabilities, possibly reflecting 7,7 + 4 salt bridges in a-helices and between

opposite residues in 3-sheets.
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3.4 Discussion

3.4.1 Performance of the all-atom residue-specific prob-

ability discriminatory function

The all-atom residue-specific probability discriminatory function (RAPDF) se-
lects the correct conformation 87% of time in cases where the decoy set pair
consists of one correct conformation and one incorrect conformation (class I de-
coys). This suggests that the RAPDF can prove to be useful tool in model
refinement, identifying the “best” conformation among a set of possibilities in
a modelling situation (say, in a comparative modelling scenario where many
models have been built and picking the correct model is necessary).

The RAPDF also selects a conformation that is within 1.0 A of the lowest
RMSD conformation for 93% of the loops in the LOOP decoy set (where the
experimental structure is not included). This suggests that the signal in the
discriminatory function is valid for a range of conformations of an amino acid
sequence. Plotting the RMSD vs. negative log probability for a set of conforma-
tions from the LOOP decoy set (Figure 3.12) shows that the RAPDF produces
a worse signal as the all-atom RMSD gets worse. This suggests that this dis-
criminatory function can be useful in simulations that attempt to get closer to

the native conformation starting from a distant conformation.
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Figure 3.12: Performance of the residue-specific all-atom probability discrimina-
tory function (RADPF) for a selected loop in the LOOP decoy set. The all-atom
RMSD vs. the negative log conditional probability of the 26,572 conformations
for the 2sga 116-119 LOOP set is shown. The plot shows how the negative log

conditional probability increases as the RMSD progressively gets worse.

3.4.2 Effect of approximating the detail in the discrimi-

natory function representation

The approximate discriminatory functions (RVPDF, NVPDF, CDF) are all able
to discriminate between the correct and incorrect structures to some degree,
but for the most accurate discrimination across a range of different decoys, an

all-atom representation is necessary (Figures 3.1a and 3.1b).

3.4.3 Effect of the compactness term on predictive power

Particular types of signals are effective for distinguishing correct from incorrect
conformations. The compactness term alone (measured by the CDF) is able

to correctly distinguish correct from incorrect/approximate conformations quite
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often, which is striking in the case of the MISFOLD and the LOOP decoy sets
(Figures 3.1b and 3.3). This suggests that some discriminatory functions might
appear to be working reasonably well on certain types of decoys because they are
measuring non-specific compactness. However, the compactness term performs
poorly, when the average discrimination ratio of the negative log conditional
probabilities of incorrect and correct conformations is considered for the various
decoy sets, compared to the other PDFs (Figure 3.1a) that are parameterised
on a compact reference state (i.e., the observations are made on a set of struc-
tures in the PDB). This illustrates the importance of taking specific atom-atom
preferences into account, and the necessity of testing a discriminatory function

on several different decoy sets to measure its effectiveness.

3.4.4 Effect of using a large distance cutoff

Using a 20.0 A distance cutoff results in the most accurate discrimination for
the RAPDF in comparison to smaller distance cutoffs (Figure 3.4). The signal
from each atom-atom interaction is extremely weak at such large distances (see
Figures 3.8, 3.9, 3.10, and 3.11), but each atom has a very large number of
contacts, so that the combined signal still has an impact. It is unlikely that the
energy of interaction is significant, except perhaps for between charged groups.
However, the overall tendency of proteins to be organized “hydrophobic inside,

hydrophilic outside” may result in a significant signal [123].
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3.4.5 Contributions of electrostatics and non-electrostat-

ics terms

Comparing the contributions of the electrostatic and non-electrostatic terms
(Figure 3.5), we see that electrostatic terms alone are inadequate for the largest
percentage discrimination of correct from incorrect conformations in the decoy
sets, but contribute significantly to the RAPDF’s ability to discriminate between
correct and incorrect or approximate conformations in the the CASP1, IFU, and

LOOP decoy sets.

3.4.6 Effect of linear interpolation and the problem of

sparse data

We constructed the discriminatory functions described here using the simplest
possible models. A more sophisticated model would take into account effects
of low counts in the computation of the frequencies and would also perform
some sort of “smoothing”, or interpolation, between the discrete conditional
probabilities obtained using the simple model.

Due to the fact that we do not partition the observed counts based on the
sequence separation and the directionality of the polypeptide chain and the fact
that we sum over a large number of probabilities and a large number (18) of
distance cutoffs, the problem of low counts is negligible, as demonstrated in
Figure 3.7.

We note that linear interpolation of the conditional probabilities in the RA-
PDF results in better discrimination for these decoy sets (Figure 3.6). This leads

to the possibility that the discrete points for each distance bin can be represented
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by a continuous function and used in a protein folding simulation technique that

requires a continuous differentiable function.

3.4.7 Effect of artifacts in the decoy sets

In the case of certain decoys sets, a discriminatory function may be able to
select the correct conformation due to subtle differences of the incorrect confor-
mations in a decoy set which distinguish it from an experimentally determined
structure. For example, refinement of structures determined using x-ray crys-
tallography is usually done with programs (like X-PLOR) which may restrain
particular distances for atom-atom interactions, such as hydrogen bonds, seen in
proteins. Since the PDFs are parameterised on high resolution x-ray crystallog-
raphy structures, it is important to demonstrate that discrimination of correct
conformations from incorrect ones is not achieved due to subtle details (i.e., that
result highly precise interatomic distances) in the experimental structures.

The results from the LOOP decoy set (Figures 3.3 and 3.12) show that this is
not the case for that particular decoy set, as the criteria for correctness depends
on selecting a low RMSD conformation to the experimental structure. In the
case of PDBERR decoy set, which consists of structures determined using x-ray
crystallography which where later found to contain errors and the corresponding
corrected experimental conformations, this is unlikely as both the correct and
incorrect conformations were refined using similar refinement procedures.

To test whether such an artifact is responsible for accurate discrimination
in the CASP1 decoy set consisting of homology models and their corresponding
experimental structures, we took two models and the corresponding experimental

structure and energy minimised them with 1000 steps of steepest descent using
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INSIGHT /DISCOVER [75]. The discrimination ratio of negative log conditional
probabilities between the unminimised model and the unminimised experimental
structure is 0.82 and 0.87 for the two cases. The discrimination ratio of the
minimised model to the minimised experimental structure is 0.78 and 0.83 for
the two cases. The difference in the discrimination ratios in both cases is less
than 0.1 even though there is a slight decrease in the negative log conditional
probabilities in the minimised forms for both the approximate and experimental
conformations. While this is not an exhaustive test, it suggests that the signal
that separates correct and incorrect conformations is not due to fine details in the
experimental structures in both this decoy set and the SGPA decoy set, where
approximate conformations were produced by molecular dynamics simulations
of the S. griseus Protease A experimental structure.

In the case of the MISFOLD decoy set, the main chains of both the correct
and incorrect conformations are from structures determined using x-ray crystal-
lography. But the percentages of structures correctly discriminated using non-
specific compactness, measured by the CDF (Figure 3.1a) indicates that the side
chain packing in the incorrect conformations does not generate as many atom-
atom contacts within 6.0 A as would normally be observed in an experimental
conformation for that sequence. Thus, the signal in this case may be partially
due to fine detailed differences between correct and incorrect conformations in a
decoy set. This underscores the importance of testing a discriminatory function

on a variety of decoy sets.
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3.4.8 Limits on the resolution of the discriminatory func-

tions

There appear to be definite limits as to what the discrimination functions can
achieve. For example, in the CASP1 decoy set (Figure 3.2), the RAPDF in
one case (nm?23) fails to discriminate between the correct and approximate con-
formations, and in another case (hpr) performs worse than than RVPDF and
NVPDF. In both these cases, the approximate conformations are close (within
0.53 A and 1.05 A C, RMSD respectively) to the experimental structure. This
suggests that the discriminatory function is unable to discriminate accurately
when the conformations are close (around 1.0 A c, RMSD) to the experimen-
tal conformation. However, for purposes such as building comparative models
that rival experimental nuclear magnetic resonance (NMR) methods, this level

of accuracy is adequate.

3.4.9 Effect of experimental accuracy

In the case of the CASP1 decoy set consisting of comparative models of a nucle-
oside diphosphate kinase (nm23) and the corresponding experimental structure,
where the RAPDF is unable to discriminate the experimental conformation from
the approximate conformation, the experimental structure has been solved to 2.8
A resolution with an R-factor of 0.24. The parent structure used for the compar-
ative modelling of nm23, PDB code 1ndl, with a percentage sequence identity
of 77%, has been solved to a 2.4 A resolution with an R-factor of 0.16. The fact
that the RADPF produces a better (lower) negative log conditional probability

for the model might simply reflect the moderate resolution and incomplete re-
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finement of the experimental structure relative to the structure used to construct

the nm23 model.

3.4.10 Relationship between the conditional probabilities

and the nature of physical interactions in proteins

The discriminatory function compiled using statistical observations averages over
different environments. As a result, it displays features not observed in a direct
way in a physics-based energy function, as shown in Figures 3.8, 3.9, 3.10, and
3.11.

Some of these features are obvious: the largest minima in the plot of C,-C,
contacts (Figure 3.8) reflects the geometrical constraints imposed by the cova-
lent structure for the amino acid sequence, and the fact that contacts between
proline nitrogens and other main chain oxygen atoms have the lowest negative
log conditional probabilities reflects the absence of the hydrogen atom in proline
nitrogens (Figure 3.9).

Some features are less obvious: the C,-C, minimum in the 5.0-6.0 A bin is
due to the presence of C,-C, contacts between 2,7 + 2 and 2,7 4+ 3 residues in
alpha-helices, and the Cg-Cg minimum in the 5.0-6.0 A bin is due to the presence
of Cg-Cp contacts between 7,7 + 1 residues in both a-helices and 3-sheets.

These observations, described in detail in the RESULT'S section, suggest that
the conditional probability formalism described in this chapter can be used to
elucidate properties about atom-atom preferences without a potential of mean
force analysis [124].

However, caution should be used when interpreting the conditional proba-

bility or potential of mean force data in physical terms due to the averaging
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of environments that occurs during the compilation of the probabilities. To il-
lustrate with an extreme example, the minimum in the N-O plot (Figure 3.9)
in the 0.0-3.0 A bin averages over hydrogen bonds between N and O atoms in
i1+ 4 residues in a-helices and between N-O distances in 7,1+ 1 (neighbouring)
residues. It is thus difficult to ascertain exactly where the signal is coming from

given the two different environments.

3.4.11 Availability of conditional probability tables on
the World Wide Web

The conditional probability tables are available on the World Wide Web at [118].

3.5 Summary

We present a discriminatory function formalism to compute the conditional prob-
ability of an amino acid sequence conformation being native-like given a set of
pairwise atom-atom distances. The formalism is used to derive three discrimina-
tory functions with different types of representations for the atom-atom contacts
observed from a database of protein structures. These functions include two vir-
tual atom representations and one all-atom representation. When applied to
six different decoy sets containing several correct and incorrect conformations
of amino acid sequences, the all-atom distance-dependent discriminatory func-
tion is able to identify correct from incorrect more often than other discrimina-
tory functions which approximate the detail in the representation. We illustrate
the importance of using a detailed atomic representation for the most accurate

discrimination, and the necessity for testing discriminatory functions against a
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wide variety of decoys. The discriminatory function is also shown to be capable
of capturing the fine details of atom-atom preferences. These results suggest
an all-atom residue-specific distance-dependent representation with a large dis-
tance cutoff is necessary for the most accurate discrimination for use in protein
structure prediction and model refinement.

In the next chapters, we show how the all-atom discriminatory function can
be used to select the most probable side chain rotamers, to assign weights to
nodes and edges in our graph-theoretic representation of protein structure, and
to select the most native-like conformation of an amino acid sequence from a set

of conformations in bona fide comparative modelling scenarios.
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Chapter 4

An analysis of side chain preferences in

protein structures

4.1 Introduction

Given a protein main chain conformation, constructing side chains by explor-
ing all possible rotamer conformations simultaneously is a computationally in-
tractable problem. Several approaches have been developed to reduce the num-
ber of possibilities. These include conformational searching using Monte Carlo
and simulated annealing methods [50, 51|, using main chain dependent rotamer
libraries to construct side chains [52], and matching local main chain coordinates
to a database of side chain/main chain combinations [53, 125, 126].

The need to build side chains from a fixed main chain often arises in the
case of comparative modelling, where an initial main chain of the sequence to
be modelled (the target) is obtained from copying the main chain coordinates
of a related sequence for which the structure has already been determined using
experimental methods (the parent) [8, 49]. Alignment of the target and parent

sequences is used to determine the equivalent residue positions for which the
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main chain in the parent structure can be copied over to the main chain of
the target structure. While the copied main chain is generally not identical to
the main chain of the target structure, it is quite similar in regions where the
sequence is conserved [34]. Thus side chain building methods have generally been
evaluated by re-building side chain conformations on an experimental structure
main chain.

We introduce a method that will reduce the number of conformational choices
for a given side chain based on a given environment, such as the local main chain.
We use the conditional probability based discriminatory function previously de-
scribed in Chapter 3 to find the negative log conditional probability of a side
chain conformation being correct. These probabilities are used to rank the dif-
ferent side chain conformations sampled using a discrete rotamer library. We
perform an analysis of the accuracy of side chain construction using only the lo-
cal main chain (up to + four residues, total of nine), using the entire main chain
of the protein, and building side chains in a pairwise manner. We compare the
change in accuracy as the environment used for the construction of side chains
is changed. We evaluate the effect of the rotamer library approximation, and
compare our results to other side chain building methods. We illustrate how side
chain construction using only the local main chain can be combined with other
search techniques to explore the conformational space of multiple protein side

chains in the context of comparative modelling.
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4.2 Methods

4.2.1 Description of discriminatory functions

Our objective here is to evaluate the strength of the interaction of a side chain
conformation with different environments. To do this, we introduce an all-atom
distance dependent conditional probability-based discriminatory function which
is used to calculate the conditional probability of contacts between pairs of atom
types in a given protein conformation. The conditional probabilities for the
residue-specific all-atom probability discriminatory function (RAPDF) are com-
piled by counting frequencies of distances between pairs of atom types in a
database of protein structures. All non-hydrogen atoms are considered, and the
description of the atoms is residue specific, i.e., the C, of an alanine is different
from the C, of a glycine. This results in a total of 167 atom types. We divide
the distances observed into 1.0 A bins ranging from 3.0 A to 20.0 A. Contacts
between atom types in the 0.0-3.0 A range are placed in a separate bin, resulting
in a total of 18 distance bins.

We compile a table of negative log conditional probabilities for all possible
pairs of the 167 atom types for the 18 distance ranges using the expression for
the probability of seeing two atom types, a and b, in contact in distance bin d
in a native conformation, P(dg|F):

P(du|F) N(dap)/ YXq N(dap)

Pt ) = o s ™ S M)/ S S N (o) (4.1)

where N(du) is the number of observations of atom types ¢ and b in a

particular distance bin d, Y3 N(du) is the number of a-b contacts observed for

all distance bins, >, N(dap) is the total number of contacts between all pairs
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of atoms types a and b in a particular distance bin d, and Y g . N(dap) is the
total number of contacts between all pairs of atom types a and b summed over
all the distance bins d.

The table of conditional probabilities is compiled from a set of 265 non-
homologous (< 30% sequence identity between any proteins in the set) high-
resolution (< 3.0 A) x-ray structures [117, 118]. A detailed description of this
formalism, along with the proteins used in the compilation process, is given in
Chapter 3.

For observations of contacts between pairs of atom types within a single
residue, a separate table of negative log conditional probabilities, which are
different from the ones observed for inter-residue contacts, is compiled using the
same formalism but with a different distance cutoff. We divide the distances
observed for atoms within a residue into 10 1.0 A bins ranging from 0.0 A up to
10.0 A.

Given a set of n distances in an amino acid sequence that fall within the
20.0 A distance cutoff, we can calculate the negative log conditional probability
of the conformation being native-like given a set of distances, P(F|{d,;}), using

the expression:

where ¢ is a constant which is ignored in practice.

For evaluating the probability of a single side chain conformation, the set of
distances between atoms in the side chain to atoms in the environment and within
the residue are calculated. The negative log conditional probabilities based on

these distances and the atom types (obtained by looking up the appropriate
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Residue  Number of xs x3 X2 X3 X4

N-Ca-Cp-Cy  Ca-Cp-C,-Cyy
N-Ca-Cp-Cy  Ca-Cp-C,-Cyy

C 1 N-Ca-Cp-S,

D 2 N-Ca-Cp-Cy  Ca-Cp-Cy-O4

E 3 N-Ca-Cp-Cy  Ca-Cp-Cy-C5  Cp-Cy-Cs-O

F 2 N-Ca-Cp-Cy  Ca-Cp-Cy-Cyy

H 2 N-Ca-Cp-Cy  Ca-Cp-Coy-Ng

I 2 N-Ca-Cp-Cqyi Ca-Cp-Cqi-Copp

K 4 N-Ca-Cp-Cy  Ca-Cp-Cq-Cs  Cp-C,-Cs-Cc  Cy-Cy-Ce-Ny
L 2 N-Ca-Cp-Cy  Ca-Cp-Cy-Cyy

M 3 N-Ca-Cp-Cy  Ca-Cp-Co-S; Cp-Cry-S5-Ce

N 2 N-Ca-Cp-Cy  Ca-Cp-Cy-O5

Q 3 N-Ca-Cp-Cy  Ca-Cp-Cy-C5  Cp-Cy-Cs-Og

R 4 N-Ca-Cp-Cy  Ca-Cp-Cy-Cs  Cp-Cy-Cs-Ne  Cy-C3-Ne-Cp
S 1 N-Cqa-Cj-0.

T 1 N-Ca-Cj-0.1

A% 1 N-Cqa-Cp-Con

w 2

Y 2

Table 4.1: Definitions for the y angles for all amino acids excluding alanine,
glycine, and proline. For each residue indicated in one letter code, the number
of y angles and the names of atom types that define the rotamer used to calculate
the x angle is given.

table) are summed up to give the strength of interaction of the side chain with

1ts environment.

4.2.2 Definition of y angles

Table 4.1 gives the definitions of the x angle(s) for each residue having one or
more y angles (alanine, glycine, and proline residues are not included in the
library). x angles are defined by the positions of four atoms which comprise a
“rotamer”, with the middle two atoms forming a vector around which the other

side chain atoms are rotated.

4.2.3 Description of rotamer library

Table 4.2 describes the main chain independent rotamer library used to sample
the side chain conformations. For each torsion angle, between two to three

x angle values (“rotamers”) are defined. The library values are compiled by
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observing preferences of side chains to be in discrete rotamer value bins in a

database of protein structures.

4.2.4 Selection of the protein structures for testing side
chain building

To devise a test set of proteins we first took a list of 487 proteins whose amino
acid sequences were less than 25% identical to each other as determined by
the PDB SELECT tool [127]. From this set, all structures determined using
NMR methods, all structures determined using x-ray crystallography having
a resolution greater than 1.50 A or an R-factor of greater than 0.20, and all
structures that were used in the compilation of the conditional probabilities for
the atom type preferences were eliminated. Table 4.3 gives the details of the

remaining fifteen structures that were selected using this process.

4.2.5 Exploration of side chain conformations

For each rotamer in each residue side chain (excluding alanine, glycine, and
proline residues), all possible y angle values in the rotamer library (Table 4.2)
are explored systematically. For example, in the case of valine which has three
possible values for its one y angle, there are three possible side chain conforma-
tions. In the case of lysine, which has four y angles with three possible values
for each y angle, there are 3* = 81 possible side chain conformations. Each
possible conformation is assigned a negative log conditional probability based
on the contacts between the atom types in the side chain and the atom types

in the environment. The conformations with the lowest negative log conditional
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Residue Rotamer Angle1 (°) Angle2 (°) Angle 3 (°)

C i 60.0 180.0 300.0
D Yi 60.0 180.0 300.0
D Yo 0.0 90.0

E Yi 60.0 180.0 300.0
E Yo 60.0 180.0 300.0
E s 0.0 90.0

F Yi 60.0 180.0 300.0
F Yo 0.0 90.0

H Yi 60.0 180.0 300.0
H Yo 60.0 180.0 300.0
I Yi 60.0 180.0 300.0
I Yo 60.0 180.0 300.0
K Yi 60.0 180.0 300.0
K Yo 60.0 180.0 300.0
K s 60.0 180.0 300.0
K Ya 60.0 180.0 300.0
L Yi 60.0 180.0 300.0
L Yo 60.0 180.0 300.0
M Yi 60.0 180.0 300.0
M Yo 60.0 180.0 300.0
M Ya 60.0 180.0 300.0
N Yi 60.0 180.0 300.0
N Yo 60.0 180.0 300.0
Q Yi 60.0 180.0 300.0
Q Yo 60.0 180.0 300.0
Q s 60.0 180.0 300.0
R Yi 60.0 180.0 300.0
R Y2 60.0 180.0 300.0
R s 60.0 180.0 300.0
R Ya 60.0 180.0 300.0
S Yi 60.0 180.0 300.0
T Yi 60.0 180.0 300.0
\% Yi 60.0 180.0 300.0
W Yi 60.0 180.0 300.0
W Yz 0.0 90.0 270.0
Y Yi 60.0 180.0 300.0
Y X2 0.0 90.0

Table 4.2: Main chain independent rotamer library used to sample side chain
conformations. For each residue in one letter code, the rotamer and between two
to three values of angles (in degrees) are given.
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Protein Number of Resolution R-factor Name

PDB code residues (A)

1bab-B 146 1.50 0.16 Hemoglobin (Human)

lcbn 46 0.83 0.11 Crambin

lcer 111 1.50 0.19 Cytochrome C

lcus 197 1.25 0.16 Cutinase

1pmy 123 1.50 0.20 Pseudoazurin (Cupredoxin)
1ptx 64 1.30 0.15 Scorpion Toxin II

1wfb-A 37 1.50 0.18 Antifreeze Protein Isoform Hplc6
1xnb 185 1.49 0.17 Xylanase

1xso-A 150 1.49 0.10 Cu, Zn Superoxide Dismutase
2end 137 1.45 0.16 Endonuclease V

2hbg 147 1.50 0.13 Hemoglobin (Bloodworm)
2ihl 129 1.40 0.17 Lysozyme (Japanese Quail)
3sdh-A 145 1.40 0.16 Hemoglobin I

2sga 181 1.50 0.13 Proteinase A

9rnt 104 1.50 0.14 Ribonuclease T1

Table 4.3: List of proteins selected to test side chain construction. The PDB
code of the protein, the size of the protein, the resolution, the R value, and the
name are given. The proteins are selected based on their high resolution (<= 1.5
A) and uniqueness (less than 25% sequence identity to each other) and are not
used in the compilation of the residue specific all-atom conditional probability
discriminatory function (RAPDF).

probabilities are used to assess the accuracy of this approach.

4.2.6 Generation of side chain conformations using only

the local main chain

All possible side chain conformations for each residue (excluding alanine, glycine,
and proline) were explored. The top five conformations with the lowest negative
log conditional probability based on the contacts between atoms in the side chain
to the local main chain (up to + four residues, total of nine) were selected for

evaluation.
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4.2.7 Generation of side chain conformations using the

entire main chain

All possible side chain conformations for each residue (excluding alanine, glycine,
and proline) were explored. The top five conformations with the lowest negative
log conditional probability based on the contacts between atoms in the side chain

to the main chain of the entire protein were selected for evaluation.

4.2.8 Generation of side chain conformations in a pair-

wise manner

For a given experimental structure main chain, all pairs of possible side chain
conformations that have at least one interatomic contact within a distance of
6.0 A are explored (excluding any pairs that have an alanine, glycine, or proline
residue in the pair). The top five pairs of conformations with the lowest total
negative log conditional probabilities, evaluated by summing the probabilities
of the contacts between atom types of each of the two side chains with their
respective local main chains (up to + four residues), and the probabilities of
the contacts involving atom types between the two side chains, were selected for
evaluation.

We also select a single best side chain conformation for each residue based
on the pairwise construction so we can compare the accuracy of side chain con-
struction when pairwise information is added to the other cases where side chains
were built using only the local main chain and the entire main chain. The best
side chain conformation for each residue is obtained by examining the pairs of

conformations that residue interacts with, selecting the pair of conformations
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with the lowest negative log conditional probability, and selecting, from that

pair, only the side chain conformation of the residue of interest.

4.2.9 Evaluation of side chain construction

Once the top five conformations in each situation described above were selected,
they were compared to the experimental structure conformation. All the ro-
tamers in a given side chain must agree with the experimentally observed ro-
tamer conformation (i.e., all the rotamers for a given side chain must be within
+ 60° or + 45° of the corresponding experimental rotamers depending on the
residue type) in order for a side chain conformation to be considered correct.
We do not consider alanine, glycine, or proline residues in the evaluation. A side
chain is considered to be correctly built if one of the members of the set of up

to five conformations satisfies this test.

4.2.10 Comparison to other methods

Evaluating the method by checking to see if a built side chain conformation and
the experimental conformation fall into the same rotamer library “bin” is useful
for comparison of the different ways we construct side chain conformations in
different environments, and circumvents the problem of using an approximate
rotamer library. However, it does not indicate exactly how accurate the con-
formations we generate are in an absolute sense, so they can be compared to
other methods. To this end, we generate the side chain conformation with the
lowest negative conditional probability between the side chain atoms and the
local main chain atoms (+ four residues, total nine where available) for a set

of ten structures that have been used by others to build side chains. We com-
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pare our methods to those of Dunbrack and Karplus [52], Holm and Sander [51],
Laughton [53], and Lee and Subbiah [50], by calculating the percentage error in
X1 angles using a 30° cutoff and the RMSD of the side chain atoms (including
the Cgz atom) between the built side chain conformation and the experimental
conformations. These criteria were selected for comparison based on the criteria
used in published papers describing the methods, with the intent of being able
to compare the approach described here with the largest number of methods.

The set of ten proteins for which side chains are rebuilt using the new evalua-
tion criteria are different from the test set used previously. Since there have been
different proteins tested by different methods, we selected a set of proteins that
have been used to build side chains previously by at least two of the methods
described in [50, 51, 52, 53]. Details regarding this set are given in Table 4.4. In
cases where different methods have used the same protein but with a different
PDB structure (for example Lee and Subbiah [50] have used 1rn3 instead of 7rsa
for Ribonuclease A), we test our method using the PDB structure used by a
method (other than our own) that gives the best results for that protein.

The conditional probability discriminatory functions compiled originally us-
ing the set of experimental structures in Chapter 3 were recompiled by removing
all the proteins and homologs for which side chains are being constructed.

The methods we choose are representative of the diverse set of methods
available for side chain construction: Dunbrack and Karplus generate a main
chain dependent library for side chain conformations (based on the ¢/t values
adopted by the main chain) and use it to construct side chain conformation
initially, and then use a minimisation scheme to reorient side-chains that conflict

with the main chain or other side chains after initial placement [52].
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Holm and Sander use a Monte Carlo algorithm together with the rotamer
library of Tuffery, et al. [128] with simulated annealing and a simple potential
energy function to optimise the packing of side chains on a given main chain
[51].

Laughton compares the local environments of each side chain conformation
to be built to a database of local environments for the same side chain type
constructed from an analysis of protein structures. The database description
consists of a list of C, coordinates and residue type for each residue in the
protein that has at least one atom within 4.0 A of a side chain atom of the
residue of interest. Side chain conformations that match the local environment
criteria the best are input to a Monte Carlo procedure to give a final structure
[53].

Lee and Subbiah apply a simulated annealing algorithm to the optimisation of
side chain packing interactions, using a simple van der Waals potential function

[50].

4.2.11 Effect of rotamer library approximation

Since we sample only between two to three angles per rotamer in a given side
chain (Table 4.2), it is possible that our results using the percentage error mea-
sure with a 30° degree cutoft or the side chain atom RMSD are influenced by the
non-ideal y values in experimental structures as well as the ability of the RAPDF
to distinguish between correct and incorrect rotamers. To evaluate the effect of
restrictions imposed by using the approximate library, we calculate the rotamer
library value nearest to the experimental structure value for each rotamer in

the experimental structure and generate conformations for all side chains for the
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Protein Number of Resolution R-factor Name

PDB code residues (A)

lern 46 1.5 0.11 Crambin

Letf 68 1.7 0.17 L7/L12 ribosomal protein
1121 130 1.5 0.18 Lysozyme (Human)

3apr 325 1.8 0.15 Rhizopuspesin

2cro 65 2.4 0.20 A cro repressor

3app 323 1.8 0.14 Pencillopepsin

3tln 316 1.6 0.21 Thermolysin

3fxn 138 1.9 0.21 Flavodoxin

Spti 58 1.0 0.20 Pancreatic tripsin inhibitor
7rsa 124 1.3 0.15 Ribonuclease A

Table 4.4: List of proteins selected to compare side chain construction against
other methods. The PDB code of the protein, the size of the protein, the reso-
lution, the R-factor, and the name are given. The proteins that have been used
previously to test side chain building in at least two of the methods described in
[50, 51, 52, 53] were selected.

ten proteins in Table 4.4 using these values. We compare the accuracy of the

model generated with the percentage error and side chain atom RMSD measures,

excluding alanine, glycine, and proline residues.

4.3 Results

4.3.1 Construction of side chains using only the local

main chain

Figure 4.1 shows five different percentages of side chains accurately constructed
using only the local main chain for the fifteen proteins in the test set. The
set size is the number of conformations considered (based on the negative log
conditional probability score). A set size of two indicates that the top two

conformations, as ranked by the negative log conditional probability score, were

98



checked to see if one of them was correct, and a set size of one indicates only the
top ranking conformation was checked to see if it was correct. The percentages
are determined by computing the number of side chains accurately constructed
for a given set size over the total number of possible side chains for each of the
structures.

The average percentages of side chains accurately constructed using only the
local main chain for the fifteen proteins in the top five set sizes are 51.9%, 67.8%),
78.5%), 83.3%, and 85.5% respectively.

4.3.2 Accuracy of individual residue side chain construc-

tion using only the local main chain

Figure 4.2 shows the percentages of side chains constructed for the 17 different
amino acids using only the local main chain and the RAPDF. Figure 4.3 shows
the difference in the percentage accuracy between side chains constructed for the
17 different amino acids using only the local main chain in cases where the residue
adopts a a-helix or (-sheet secondary structure as classified by the program
DSSP [129], and percentage accuracy of side chains constructed regardless of
secondary structure adopted. The data to calculate the percentages in Figures
4.2 and 4.3 is obtained by calculating the percentage accuracy for each of the
seventeen side chain types by building the side chain conformations for the fifteen
structures in Table 4.3.

The average percentage accuracy for all residues for the conformation with
the lowest negative log conditional probability (set size 1) based on secondary
structure type is 52.6% for a-helix, 42.2% for (F-sheet, and 42.0% for residues not

in a-helix or -sheet. The average percentage accuracy for set size 1 conforma-
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Figure 4.1: Results of building side chain conformations for fifteen proteins us-
ing the local main chain and the residue-specific all-atom conditional probabil-
ity discriminatory function (RAPDF). The bars represent the percentage of side
chain conformations accurately constructed for different set sizes. The lowest
bars (set size 1) represent the percentage of side chain conformations accurately
constructed considering only the conformation with the lowest negative log con-
ditional probability as evaluated by the RAPDF. The highest bars (set size 5)
represent the percentage of side chain conformations accurately built considering
the five conformations with the lowest negative log conditional probabilities.

tions regardless of secondary structure type is 44.8%. From Figures 4.2 and 4.3,
it is evident that certain residues are more easily built based on the secondary
structure adopted by the main chain. For example, phenylalanine in a a-helix
is constructed accurately 66.6% of the time by the RAPDF using only the local

main chain, whereas in a 3-sheet the percentage accuracy is 80.0%. Valine in a

a-helix is constructed to 88.0% accuracy, whereas in a (3-sheet, it is constructed
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Figure 4.2: Results of building side chain conformations for seventeen amino acid
types using the local main chain and the residue-specific all-atom conditional
probability discriminatory function (RAPDF). The bars are as in Figure 4.1.

to 76.9% percent accuracy. Some of the more dramatic differences include tryp-
tophan (85.7% in a-helix, 30.7% in 3-sheet), and aspartic acid (82.1% in a-helix,
44.4% in (-sheet). The side chains that are the most difficult to build are the
ones with the most x angles and therefore the most degrees of freedom, such as

glutamic acid, lysine, methionine, glutamine, and arginine.
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Figure 4.3: Differences in the accuracy of building seventeen amino acid types
using the local main chain and the residue-specific all-atom conditional proba-
bility discriminatory function (RAPDF) as a function of main chain secondary
structure. The bars represent the differences between the percentage of side
chain conformations accurately constructed where the amino acid main chain is
in a a-helix and (-strand secondary structure as classifed by the program DSSP
[129] and the percentage of side chain conformations accurately constructed for
all amino acid types regardless of the secondary structure type of the main chain.
A positive percentage difference (bar above the axis) indicates that the percent-
age accuracy of side chain conformations built was more accurate in cases where
the main chain adopted the relevant secondary structure compared to the per-
centage accuracy of side chain construction ignoring the secondary structure of
the main chain. Only the conformations with the lowest negative log conditional
probability are selected for this evaluation.
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4.3.3 Construction of side chains using the entire main

chain

Figure 4.4 shows the percentages for side chains accurately constructed using
the entire protein main chain for the fifteen proteins in the test set. The per-
centages are given for each of the top five set sizes. The average percentages
of side chains accurately constructed using the entire main chain for the fifteen
proteins in the top five set sizes are 57.8%, 73.2%, 80.3%, 84.1%, and 86.7%,
respectively. Comparing the data from Figure 4.1, which shows the results of
side chain construct using only the local main chain, we see that that using the

entire main chain improves the accuracy at best by only 5.9%.

4.3.4 Construction of side chains in a pairwise manner

Figure 4.5 shows the percentages for pairs of side chains accurately constructed
taking into account the negative log conditional probabilities of the interatomic
contacts between the two side chains as well as the probabilities of the inter-
atomic contacts between each of the side chain conformations and the corre-
sponding local main (+ four residues). In this case, the percentage represents
the number of pairs of side chains built accurately for both side chain conforma-
tions over the total number of possible pairs of side chain conformations.
While the results here are biased because of the larger number of conforma-
tions used in the percentage evaluation, the average percentages of pairs of side
chains accurately constructed for the fifteen proteins in the top five set sizes are

32.3%, 45.5%, 52.0%, 56.8%, and 60.3% respectively.
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Figure 4.4: Results of building side chain conformations for fifteen proteins us-
ing the entire protein main chain and the residue-specific all-atom conditional
probability discriminatory function (RAPDF). The bars are as in Figure 4.1.

4.3.5 Comparison of side chain construction at a single

residue level using local and pairwise information

We wish to assess the increase in accuracy in side chain construction achieved
by adding the influence of a single side chain to that of the local main chain.
Instead of measuring percentage accuracy for pairwise construction by check-
ing to see if both side chain conformations are built accurately, we select, for a
given residue, its interaction pair with the lowest negative log conditional prob-
ability and assess whether the conformation of the given residue is constructed

accurately. For example, if a valine at position 13 interacts with ten other
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Figure 4.5: Results of building side chain conformations for fifteen proteins in
a pairwise manner using the residue-specific all-atom conditional probability
discriminatory function (RAPDF). The bars are as in Figure 4.1. In this case,
for a conformation to be considered “correct”, both the side chain conformations
in a pair must be built correctly.

residues, the best pairwise conformation for each of the ten pairs is obtained by
selecting the conformation with lowest negative log conditional probability for
all possible conformations of that pair. Among these ten pair probabilities, we

select the pair of conformations with the lowest negative log conditional proba-

bility and check to see only if the valine conformation is constructed accurately.
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This process is repeated for all pairs of residues in the fifteen proteins in the test
set.

Figure 4.6 shows the results of this comparison. Both on a protein (Figure
4.6a) and on an individual amino acid (Figure 4.6b) level we see that there is
about a 10% improvement in the construction of the side chains on average.
The average percentage accuracy over the fifteen proteins (Figure 4.6a) and for
individual amino acid construction (Figure 4.6b) for side chain conformations
selected using the above process is 60.4% and 53.5% respectively. This is an
improvement over both using only the local information and using the entire
main chain for construction of side chains. In only one protein (1wfb-A) does
building the side chains in a pairwise manner worsen percentage accuracy (Figure
4.6).

The residues built with a percentage accuracy of more than 80%, when eval-
uated individually, are also generally the ones with high percentage accuracies
when pairs of side chain conformations are evaluated simultaneously: Phenylala-
nine-threonine, valine-threonine, and cysteine-threonine have the largest pair-
wise percentage accuracies (of 75.0%, 78.1%, and 90.0% for the pair with the
lowest negative log conditional probability) among all pairs of residue types.
These four residues are also the ones with the highest percentage accuracies
when evaluated individually and are also the ones with the greatest improve-

ment over using only the local main chain information (Figure 4.6)

4.3.6 Comparison to other methods

Table 4.5 compares the results using our method for a set of ten proteins for

which side chains have been constructed by other methods. The measures used
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Figure 4.6: Comparison of side chain construction using only local main chain
information and that plus pairwise information. The side chain conformation
with the lowest negative log conditional probability using only the local main
chain (4 four residues) and the side chain conformation in a pair of interacting
side chains with the lowest negative log conditional probability using both the
local main chain and pairwise information for each residue are compared with the
experimental conformation to obtain the percentage of side chains constructed
correctly. The comparison is made for the fifteen proteins in the test set by
protein (a) and by amino acid (b).
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for comparison are the percentage error in the y; angles (i.e., the fraction of built
conformations where the deviation in the x; angle is greater than 30° times 100)
and the side chain atom RMSD (including the Cg atom) for all the residues in
the protein (excluding alanine, glycine, and proline residues).

Out of the ten proteins for which side chains were built, five of the proteins
have the lowest, or one of the lowest, percentage error in the y; angles, and six
of the proteins have the lowest side chain atom RMSD. Different methods have
used slightly different criteria for calculating the percentage error in the x; angle
and the side chain RMSD. We compare the performance of our method to each
of those methods, taking into account the individual criteria used:

Dunbrack and Karplus [52] used a different cutoff of 40° for measuring the
error in the y; torsion angles and they include proline residues in their calculation
of the percentage of y; angles correctly constructed. Taking the larger cutoff and
the proline residues into account in calculating the percentage error, the results
for Lysozyme and Pancreatic Trypsin Inhibitor using our method are identical to
theirs. For two of the proteins (Rizopuspepsin and Thermolysin), the percentage
error is lower, and in two cases (Ribonuclease A and Crambin), the percentage
error is higher.

Holm and Sander [51] use a cutoff of 30° for the y; torsion angle and they
include proline residues in their calculation of the percentage of y; angles cor-
rectly constructed. In this case, the inclusion of proline residues does not appear
to change the relative performance of the methods for the nine cases where they
build side chains. In four cases (Pancreatic Trypsin Inhibitor, Flavodoxin, Rhi-
zopuspepsin, and A cro repressor) the percentage error in the y; angles is lower

with our method, in two cases (Thermolysin and Pencillopepsin) the percentage
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error is the same, and in three cases (Lysozyme, Ribonuclease A, and L7/L12
ribosomal protein), it is worse. Holm and Sander [51] also include the side chain
atom RMSD (including the Cgz atom) to a single digit precision. In four cases
(Pancreatic trypsin inhibitor, Thermolysin, Flavodoxin, and Pencillopepsin) our
method produces lower side chain atom RMSDs. In three cases (L7/L12 ribo-
somal protein, Rhizopuspepsin and A cro repressor) the RMSDs are about the
same, in two cases (Lysozyme and Ribonuclease A), the RMSDs are worse.

Comparing our results to the side chain atom RMSDs provided by Laughton
[53] for the eight structures whose side chain conformations are constructed,
in six cases (Lysozyme, Pancreatic Trypsin Inhibitor, Crambin, Thermolysin,
Flavodoxin, and Pencillopepsin) the RMSDs are better, in one case (Ribonucle-
ase A) the chain atom RMSDs are identical, and we fail to have a lower RMSD
only in one case (L17/L12 ribosomal protein).

Lee and Subbiah [50] produce lower RMSDs than the method described here
for three out of seven structures for which the side chain atom RMSDs can be

compared (Lysozyme, Ribonuclease A, and Pancreatic Trypsin inhibitor).

4.3.7 Effect of rotamer library approximation

Table 4.6 shows the results of using the approximate rotamer library to sample
side chain conformations. The average percentage error in y; angles is 5.4%, and
the average side chain RMSD error is 0.92 A. The largest percentage error for x4
angles (of 12.1%) and the largest side chain atom RMSD (1.17 A) is observed for
3fxn. lern is the structure with the lowest percentage error (0%) and the lowest
side chain RMSD (0.70 A) These values represent the maximum accuracy the

methods described here can achieve.
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Name PDB x1 side chain Dunbrack Holm &  Laughton Lee &

of code > 30° atom RMSD & Karplus Sander Subbiah
protein (%) (A) (%) (%/A) (A) (A)
Crambin lern 13 1.40 8 - 1.43 1.65
L7/L12 ribosomal  1ctf 28 1.69 - 19/1.7 1.59 1.86
Lysozyme 1lz1 24 1.97 23 12/1.6 2.22 1.62
A cro repressor 2cro 34 2.29 - 43/2.3 - 2.39
Pencillopepsin 3app 19 1.20 - 19/1.4 1.22 -
Rhizopuspesin 3apr 15 1.44 18 16/1.4 - -
Flavodoxin 3fxn 37 1.76 - 39/1.9 1.96 1.90
Thermolysin 3tln 23 1.62 26 23/1.7 1.72 -
Trypsin inhibitor 5pti 21 1.73 15 22/1.9 2.61 1.49
Ribonuclease A Trsa 33 2.02 21 21/1.8 2.02 1.86

Table 4.5: Comparison of side chain construction using the local main chain and
the residue-specific all-atom probability discriminatory function to four other
previously published methods. The names and PDB codes of the ten structures
chosen for comparison, the percentage error in y; angles (using a 30° cutoff)
excluding proline residues, the side chain atom RMSD (including the Cg atom)
are given. For the method of Dunbrack & Karplus, we list the percentage error
in the y; as given in [52], which includes prolines and uses a 40° cutoff; for
Holm & Sander, we list the percentage error in the x; angles (which includes
prolines and uses a 30° cutoff) and the side chain atom RMSD as given in [51];
for Laughton and Lee & Subbiah, the side chain atom RMSD, as listed in [53]

and [50] respectively, is given.

PDB Number of % xi > 30° side chain

code  xj rotamers (%) RMSD (A)
lern 32 0.0 0.70
letf 46 6.5 0.88
11z1 103 6.8 1.03
2cro 52 5.7 1.06
3app 247 3.2 0.88
dapr 243 3.2 0.86
3fxn 115 12.1 1.17
3tln 244 9.0 0.99
Spti 42 4.7 0.87
7rsa 105 2.8 0.83

Table 4.6: Effect of using a discrete rotamer library approximation to sample
side chain conformations. For each structure, side chain conformations with
rotamer library values that are the closest to the experimental rotamer values
are generated and compared with the experimental structure. The number of y;
angles considered, the percentage error in y; angles (using a 30° cutff) and the
side chain atom RMSD (including the Cs atom) is given.
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4.3.8 Effect of experimental uncertainty

The percentage accuracies may be influenced by crystallographic interatomic
contacts between neighbouring molecules and high temperature factors. We
rebuilt side chains using the local main chain for all the fifteen proteins in the
test set excluding side chains having one or more atoms with a temperature
factor greater than 30.0 A%, Since we use high resolution structures with low
R-factors, the numbers of side chains excluded by this filter does not significantly
change the results (less than 5% average percentage accuracy improvement for

the fifteen proteins).

4.4 Discussion

4.4.1 Effect of environment on side chain construction

We find that using local main chain information alone is enough for the residue-
specific all-atom conditional probability discriminatory function (RAPDF) to
select the correct side chain conformation from incorrect ones with an average
percentage accuracy of about 45% when individual amino acids are considered in
a set of fifteen proteins. More significantly, when the top five ranking conforma-
tions, as sorted by the negative log conditional probability score, are considered,
the correct side chain conformation is selected 82% of the time (Figure 4.1). Us-
ing the entire experimental structure main chain as the environment to predict
conformations increases accuracy to 53% and 86% for the top one and the top five
conformations respectively (Figure 4.4). Including the effect of the single most
influential side chain along with the local main chain improves the percentage

accuracy on average by about 10% (Figure 4.6).
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This signifies that the contribution of the non-local main chain for deter-
mining the conformation of a specific residue side chain is not as influential as
the conformation of a single residue which interacts most favourably with that

specific residue.

4.4.2 Choice of criteria for evaluation of side chain build-

ing methods

There are several side chain building methods published in the literature that
use different evaluation methods to determine whether a side chain conformation
is “correct”. We used two types of evaluation criteria in this work: one method
simply checks to see if all the y angle values for a built conformation of a side
chain are the closest to the experimental structure among all the possible library
values for that y angle. This translates to a maximum error of + 60° for most y
angles; the maximum error for aspartic acid ys, glutamic acid x3, phenyalanine
X2, and tyrosine y, is + 45° (see Table 4.2).

Using this method for evaluation, we do not deal with the problem of checking
to see if an error in the side chain building is due to the approximation in the
discrete rotamer library. However, for comparison with other methods published
in the literature, the percentage of side chains x; angles built within 30° for
all residues (excluding alanine, glycine, and prolines), and the side chain atom
RMSD (including the Cgz atom) between the experimental structure side chains

and the built side chains are used.
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4.4.3 Effect of secondary structure and residue type on

side chain construction

The accuracy of side chain building generally depends on the secondary structure
adopted by the local main chain [130, 131]. In our case, the average percentage
accuracy for individual amino acids based on secondary structure type is 52.6%
and 42.2% for a-helix and [3-sheet secondary structures.

The accuracy of side chain building also depends on the residue type [52, 131].
It is perhaps trivial to select the right rotamer conformation in the case of a side
chain with a single x; angle with three degrees of freedom (such as valine) com-
pared with a side chain with four y angles with a total of 3* = 81 degrees of
freedom (such as lysine) since random selection alone will yield percentage ac-
curacies of 33.3% and 1.2% respectively for the two side chain types. However,
even when comparing residues with similar degrees of freedom, ignoring sec-
ondary structure of the residue, there are differences in the percentage accuracy
(Figure 4.2): isoleucine has a percentage accuracy of 44.1%, whereas leucine
has a percentage accuracy of 67.2%. Serine has a percentage accuracy of 63.6%
whereas threonine and valine have percentage accuracies of 77.2% and 78.8%
respectively.

Considering the effect of the combination of residue type and secondary struc-
ture of the main chain on side chain building also leads to interesting observations
(Figures 4.2 and 4.3: isoleucine has an identical percentage accuracy of 52.2% in
both a-helices and (3-sheets, whereas leucine has a percentage accuracy of 63.9%
and 75.8% in a-helices and 3-sheets respectively. Threonine has a similar per-
centage accuracy in both a-helices and (3-sheets (72.0% and 72.8%), but serine

has an accuracy of 61.3% in a-helices and an accuracy of 54.2% in (3-sheets.

113



Some of the observations are consistent with our understanding of the geom-
etry of side chains and the geometry of secondary structure main chain [131].
The side chains for more than half the amino acid type, are built more accu-
rately in a-helices than in (3-sheets, with the exception of histidine, isoleucine,
threonine, and arginine where the percentage accuracies are similar and leucine
and phenylalanine, where the accuracy is better in sheet than in helix. This is
presumably because the main chain conformation in helix regions reduces the
number of degrees of freedom a residue side chain conformation can explore
[132, 133], thus making it easier for the discriminatory function to distinguish
correct from incorrect conformatons.

The secondary structure of the local main chain, along with the type of the

residue being built, must thus be considered carefully when building side chains.

4.4.4 Comparison to other methods

It is difficult to compare different methods because the conformations are built
with different goals and using different criteria for accuracy. Since there is insuf-
ficient detail provided, we have tried to make our criteria as rigourous as possible
and handle exceptions on a case-by-case basis (see the RESULTS section). The
method described here, based on using the RAPDF to select side chain confor-
mations with the lowest negative log conditional probability, using only the local
main chain, compares favourably to the other methods [50, 51, 52, 53] published
in the literature. All the four methods chosen for comparison in turn compare

their methods to other methods and produce similar or slightly better results.
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4.4.5 Effect of rotamer library approximation

The discriminatory function and the methods described here do not rely upon
any particular rotamer library. We used a discrete rotamer library to minimise
the number of conformations explored. We find that using up to three y angle
values per rotamer does not drastically affect the maximum possible accuracy
of the method. The average percentage error for y; angles (using a 30° cutoff)
is only 5.4%, and Table 4.6 shows the limit of what the most accurate chain
construction method can achieve given the rotamer library (Table 4.2) for the

set of ten proteins.

4.4.6 Building side chains in a realistic modelling situa-
tion

The similarity in results using different methods, some of which are highly com-
puter intensive [50], and some that require only a few seconds for a protein of
any size [52], suggests that it is not too difficult to reproduce the correct side
chain conformations with the experimental main chain to an average percentage
accuracy of ~ 75% in the y; angles.

However, it 1s highly likely that in approximate environments, the side con-
struction methods tested in idealised environments will not perform as well. For
example, in a comparative modelling scenario, the main chain is approximate
(~ 1.0 A RMSD) and sometimes incorrect (> 3.0 A RMSD) even when there
is a high (> 50%) degree of local sequence identity between pairs of homolo-
gous structures (Chapters 2 and 6). Chung and Subbiah have shown that as

the main chain RMSD between homologous proteins rises to above 2.0 A, and
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the percentage sequence identity between them is in the twilight zone (20-30%
sequence identity), the average side chain RMSD error for the side chains built
on the approximate main chain is 3.1 A, and the average percentage accuracy
for x1 angles is 22% (using a 40° cutoff), in buried residues [60].

The increase in error in side chain construction as the main chain varies
between homologous structures is because the main chain and side chain con-
formations are intimately interconnected (Chapter 2). A proper treatment to
handle the problem of interconnectedness in protein structures would be to vary
both the side chains and the main chains simultaneously (Chapters 5 and 6).
The approach and the analyses described here helps by reducing the number of
side chain choices for a given region of local main chain.

Figures 4.2 and and 4.3 show the power of the RAPDF to select correct con-
formations from incorrect ones using the local main chain in different secondary
structure environments for seventeen amino acids. We use this information to
reduce the number of side chain conformations sampled per residue and perform
a limited combinatorial search using a graph-theoretic clique finding method in
the next chapter. At present this allows us to sample side chain conformations
for 15-30 residues simultaneously, which enables us to construct small cores and
small regions of insertions and deletions in comparative modelling in a context-
sensitive manner.

The results presented here for side chain construction using the entire main
chain is viable only in an ideal scenario where the entire main chain is correct.
However, building side chains in a pairwise manner is possible in a comparative
modelling scenario for all pairs of side chains. Selecting single side chains by

first building them in a pairwise manner appears to improve the accuracy of
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side chain construction (Figure 4.6). Future work will include an algorithm that
will generate multiple side chain conformations for single residues using pairwise
information, thus reducing the number of conformations that need to be explored

per residue position.

4.5 Summary

A discriminatory function based on a conditional probability formalism to distin-
guish between correct and incorrect conformation of protein structures is used for
selecting side chain rotamers on a fixed main chain. The conditional probability
discriminatory function allows us to rank different possible side chain conforma-
tions based on contacts between side chain atoms with atoms in the environment.
We compare the differences in constructing side chain conformations using only
the local main chain, using the entire main chain, and by building pairs of side
chains simultaneously on experimental structure main chains. Using only the
local main chain allows us to construct side chains with an average percentage
error of 24.7% on the x; angles using a 30° cutoff, and an average side chain
atom RMSD of 1.72 A for a set of ten proteins. The results of constructing
side chains for the ten proteins are compared to the results of other side chain
building methods previously published. The comparison shows similar accura-
cies for reconstruction of side chain conformations on the experimental structure
main chain. An advantage of this approach is that it can be used to reduce
the number of side chain conformations considered per residue position, thus
enabling limited combinatorial searches for building multiple protein side chains

simultaneously.

117



We use this approach to reduce the number of nodes in our graph theoretic
representation, which is introduced in the next chapter, in conjunction with
the discriminatory function described in the previous chapter, to model side
chain and regions of main chain for making bona fide comparative modelling

predictions (Chapter 6).
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Chapter 5

A graph-theoretic approach to protein

structure prediction

5.1 Introduction

Any algorithm that attempts to predict the three-dimensional (3D) structure
of a protein sequence must be able to handle the combinatorial explosion that
occurs in the search space. Side chains and main chains of residues in a protein
have many degrees of freedom; if we assume there exists a perfect discriminatory
function that can distinguish a native-like structure from a non-native one in
all cases, and we allow only a few degrees of freedom per residue in the ¢/
angle space of the main chain and y angle space in the side chain for all the
residues in a protein sequence, then there are an astronomically large number of
possible conformations that need to be explored to guarantee that the native-like
structure will be found [134, 135].

To overcome this computational intractability, i.e., where large amounts of
computation times are required even for relatively small problems, approaches

for searching only a limited subset of conformational space of a protein sequence
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have been developed. These approaches include a variety of Monte Carlo-based
methods [136, 110, 137, 138, 139, 120] and Genetic Algorithms simulations [111,
140, 121]. These methods usually rely on some discriminatory energy function
that distinguishes correct from incorrect conformations [118] as the sampling
occurs and “guides” them toward the native structure. Each of these methods
have their own limitations: sampling only a subset of the conformational space
still limits the number of total conformations that can be explored [120, 121]
and improper or inadequate sampling makes it difficult for some methods to
“jump through” conformational space because different conformational states
may be separated by high energetic barriers [51]. In some cases, the calculation
of the fitness of a conformation can be a prohibiting factor computationally when
evaluating a large (> 10%) number of conformations.

The fundamental reason an exponential number of possible conformations
of an amino acid sequence needs to be evaluated (in the worst case) to select
the native-like conformation is due to the context-sensitivity of the interactions
in proteins. That is, each residue conformation in a sequence cannot be built
in isolation of other residue conformations, as different regions of the sequence
influence each other in the 3D structure. Thus, an algorithm that attempts to
mix and match between possible side chain and main chain conformations to
find the optimal conformation must take into account the web of interactions
that occur at any position in the protein structure.

In Computing Science, the notion of a “graph” has been used to describe
many systems that are made up of such interconnected networks [141]. These
include laying out the shortest combination of railroad segments between a net-

work of cities (finding minimal spanning trees), finding the shortest paths be-
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tween any two cities in a network of cities, and finding the shortest path in a
city network which involves passing through all the cities exactly once (the fa-
mous Travelling Salesman problem). In computational chemistry and biology,
graph-theoretic approaches have been used to enumerate chemical isomers [142]
and for protein structure comparison [143, 144].

Our goal is to find the best set of interactions in a protein structure given
a variety of side chain and main chain choices for each position in the struc-
ture. We present an algorithm based on graph theory that will find the optimal
arrangement of all these choices, as measured by some discriminatory function,
while adequately considering the context-sensitivity seen in protein structures.
This representation gives us the control over the choices for possible side chain
and main chain conformations for each residue position, enabling us to select the
sample space in an intelligent manner. We use pairwise discriminatory functions
to speed up the calculation of the fitness of a given conformation by adding up
the weights of the nodes and the edges, which can provide an order of mag-
nitude improvement compared to calculating the weight of each conformation
separately.

Specifically, we represent possible conformations of an amino acid sequence
as weighted maximal completely connected graphs (cliques) and enumerate all
the cliques the size of the protein to find the ones with the best weight (which
is assumed to represent a native-like conformation). This is the equivalent of
systematically exploring every combination of side chain and main positions that
is input, and thus limits the number of choices for each position. We therefore
apply the approach presented here to comparative modelling problems where the

number of residues that need to be searched combinatorially at a given time is
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much lesser than the size of the protein being modelled.

Comparative modelling is a special case of model building where we exploit
the fact that two proteins related by evolution have similar 3D structures. Gener-
ally an alignment between the sequence to be modelled (the target) and a related
sequence with known structure (the parent or the template) is first constructed
[8, 49]. Given such an alignment, an initial model is built by copying the main
chain coordinates for equivalent residues and copying side chain coordinations
for residue identities which are thought to be conserved. We describe how the
graph-theoretic clique finding method can be used in a comparative modelling
scenario to build side chains and regions of main chain representing insertions,
deletions, and main chain variations between the target and parent structures,

and mix and match between different parent homolog structures.

5.2 Methods

5.2.1 General description

Each possible conformation of a residue in an amino acid sequence is represented
using the notion of a node in a graph. Edges are then drawn between pairs
of residues/nodes that are consistent with each other. Edges and nodes are
weighted according to some fixed criteria. Once the entire graph is constructed,
all the maximal sets of completely connected nodes (cliques) are found using a
clique finding (CF) algorithm. The cliques with the best weight are considered
to be similar to the native structure. Figure 5.1 illustrates how the CF method

1s used to model structures.
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Figure 5.1: Illustration of the graph-theoretic clique finding (CF) method for
protein structure prediction. In the first step, possible side chain and main
chain conformations of residues are represented as nodes in a graph based on in-
teractions between a single side chain conformation and the local main chain. In
this idealised example, three residue positions (isoleucine (I), lysine (K), pheny-
lalanine (F)) with a single possible conformation and one residue (valine) with
two possible conformations (V and V’) are shown, resulting in five nodes with
different weights. In step II, edges are drawn between consistent nodes (see the
METHODS section for details). In the example, the inconsistent pairs of nodes
are the ones representing the two different valine conformations V and V’ (a
residue cannot have two conformations simultaneously) and a clash that occurs
between V’ and F; edges are not drawn between these pairs of nodes. Edges are
drawn between all other pairs of nodes and each edge is assigned a weight based
on the interaction between the pair of residue conformations (nodes). In the
third step, all maximal completely connected subgraphs, or cliques, the size of
the amino acid sequence, where every node is connected to every other node, are
found and the total weights of the cliques are calculated by summing the weights
of the nodes and the edges. Each clique represents a plausible conformation of
the entire amino acid sequence and the clique with the best weight is assumed
to represent the correct structure. In this example, there is only one clique with
nodes {I,V.K.F}. A potential clique IV’ K,F is not considered because of the
clash between V’ and F.
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5.2.2 Description of nodes

Each possible conformation of a residue (side chain and main chain) represents a
node in the graph. Nodes have weights based on the strength of the interaction
between the side chain atoms within a residue and between the side chain atoms
and the local main chain atoms. The main chain atoms of up to four residues
on either side of the residue position representing the node are considered for

calculating the weights.

5.2.3 Description of edges

Edges are drawn between pairs of nodes. Edges are weighted based on the
strength of interaction between the atoms of the pair of residues representing the
nodes. Edges are drawn in a consistent manner. Thus any clique containing a set
of edges will represent a consistent set of conformations for all residues. In this
particular work, packing consistency is maintained by not drawing edges between
nodes whose atoms clash (a contact less than 2.0 A) with each other. Covalent
consistency is maintained by partitioning a complete protein conformation into
crossover points. If two residue positions are within a main chain region being
built that is between two consecutive crossover points, then both conformations
must be connected by a single covalently linked main chain conformation for an
edge can be drawn between them (see Figure 5.2 for an illustration of covalent
consistency). Edges are also not drawn between different possible conformations

of the same residue.
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Figure 5.2: Definition of covalent consistency in the graph-theoretic clique find-
ing (CF) approach. Covalent consistency is maintained by assigning crossover
points to pairs of possible main chains for the entire protein. Possible conforma-
tions of different residues (nodes) in a main chain region between two consecutive
crossover points must be connected by a single continuous covalently linked main
chain conformation before an edge can be drawn between them.

5.2.4 Description of the discriminatory function

Our objective here is to assign weights to nodes and edges by determining the
strength of the interaction of a side chain in a node to the local main chain and by
determining the strength of interaction between two nodes/residues that form an
edge. To do this, we use an all-atom distance dependent conditional probability-
based discriminatory function to calculate the conditional probability of contacts
of a given distance between pairs of atom types for a given conformation of in-
terest. The conditional probabilities for the residue-specific all-atom probability
discriminatory function (RAPDF) are compiled by counting frequencies between
pairs of atom types in a database of protein structures. All non-hydrogen atoms
are considered, and the description of the atoms is residue specific, i.e., the C,
of an alanine is different from the C, of a glycine. This results in a total of 167

atom types. We divide the distances observed into 1.0 A bins ranging from 3.0
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A to 20.0 A. Contacts between atom types in the 0.0-3.0 A range are placed in
a separate bin, resulting in total of 18 distance bins.

We compile a table of negative log conditional probabilities for all possible
pairs of the 167 atom types for the 18 distance ranges using the the expression
for the probability of seeing two atom types, a and b, in contact in distance bin
d in a native conformation, P(du|F):

P(du|F) N(dab)/ 3a N (dav)

Pt ) = o s ™ S M)/ S S N (o) (5:1)

where N(du) is the number of observations of atom types ¢ and b in a

particular distance bin d, Y3 N(du) is the number of a-b contacts observed for
all distance bins, Y, N(dap) refers to the total number of contacts between all
pairs of atoms types a and b in a particular distance bin d, and > ;3> .5 N(dap)
is the total number of contacts between all pairs of atom types a and b summed
over all the distance bins d.

The table of conditional probabilities is compiled from a set of non-homo-
logous (less than 30% sequence identity between any proteins in the set) high-
resolution (less than 3.0 A) x-ray structures [117]. A detailed description of this
formalism, along with the proteins used in the compilation process is given in
Chapter 3.

For observations of pairs of atom types that belong within a single residue,
a separate table of negative log conditional probabilities is compiled using the
same formalism, but with a different distance cutoff. We divide the distances
observed for atoms within a residue into 18 1.0 A bins ranging from 0.0 A to
18.0 A.

Given a set of n distances in an amino acid sequence that fall within the
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20.0 A distance cutoff, we can calculate the negative log conditional probability
of the conformation being native-like given a set of distances, P(F|{d,;}), using

the expression:

In P(F|{d;;}) = 3 In P(du|F) + ¢ (5.2)

where ¢ i1s a constant which is ignored in practice. The weight of an edge or
a node is assigned by the calculating all the distances involved. In the case of
node, it is the set of distances between the atoms in the side chain conformation
and the local main chain, including distances between atoms within a residue.
In the case of an edge between nodes, it is the set of distances between pairs of

atoms in the two residues.

5.2.5 Description of side chain sampling methods

Side chain conformations for a given residue position were generated by explor-
ing all the possible side chain conformations and selecting the most probable
conformations based on the interactions of a given conformation with the local
main chain. For each y angle in a side chain conformation, up to three rotamers
were considered based on the rotamer library described in Table 4.2. For each
possible side chain conformation, the interactions between the atoms in the side
chain and the local main chain (4 four residues, if available) were evaluated
using the conditional probability discriminatory function described above. The
side chain conformations with the lowest negative log conditional probability
were taken to represent the most probable conformations.

Depending on the number of residues sampled, we selected up to six con-

formations per residue based on the strength of the interaction with the local
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main chain. That is, the top six highest weighted side chain conformations are
selected. We have shown that the correct side chain rotamer is present in one of
the top five conformations (sorted according to the strength of the interaction
with the local main chain) more than 80% of the time (Chapter 4).

The number of actual side chain conformations sampled for a given residue
was chosen to minimize the size of the resulting graph and thus ensure the

tractability of the CF algorithm.

5.2.6 Description of main chain sampling methods

For building short (~ 15 residues) regions of main chain such as loop regions,
insertions, and residues flanking deletions, an initial model or a framework, con-
sisting of the main chain coordinates for the rest of the protein other than the
region being built must exist. The initial model must also consist of additional
residues in the region where the main chain will be built purely for the purposes
of obtaining distance constraints and fitting the sampled regions onto the initial
model. This means that at least an additional four residues, two on N-terminal
side and two on the C-terminal side of the region that represents an insertion,
deletion or main chain variation, must be included as part of the region being
built.

We use a database method to generate main chain conformations. The
database method takes a set of C, distance constraints and finds a set of main
chain conformations in a database of 520 protein structures that match those
constraints [58]. We use three constraints for generating main chain conforma-
tions and their specification is the same as in [58]: if the main chain region being

built is n residues spanning residue positions p to ¢, then the constraints used
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are d(p, q), the C, distance between residues p and ¢, d(p,q—1), and d(p+1, q).

A database conformation is considered to fit the distance constraints if d(p, q)
differs by less than & 1.0 A from the corresponding distance in the initial model,
and d(p,q—1) and d(p+1, q) differ by less than 4 2.0 A from the corresponding
distance in the initial model. Thus this can result in deviations of up to 2.0 A
for each of the two terminal C, position in the main region being built (residues
p and ¢), and in deviations of up to 4.0 A for C, positions p+ 1 and ¢ — 1 and
p+ 1 and g between the experimental structure and the conformations obtained
from the database. The root residues, i.e. the residues flanking the region being
built, are defined to be residues p — 1 and ¢ + 1.

If a cluster of main chain conformations found by the database search all have
¢ /v torsion angle values that are within some cutoff (generally 30°) then only
one conformation in that cluster is used. The conformation selected from the
cluster is the one that represents the mean conformation of the cluster, i.e., the
conformation that is closest in terms of ¢/ angles to all the other conformations
in the cluster. The main chain conformations found are then positioned in the
initial model or the framework using the methods described in [57, 58]. At this
point, the conformations of the residues in the initial model used to generate
the distance constraints and for fitting purposes (residues p, p +1, ¢, ¢ — 1)
are removed and only the database conformations are used for these regions
(residues p through ¢). A preliminary screening is done to exclude any main
chain conformation that clashes (any interatomic contact less than 2.0 A) with

the main chain of the rest of the modified initial model.
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5.2.7 Description of the clique finding method

The clique finding (CF) algorithm we use was developed by Bron and Kerbosch
[145]. This algorithm combines a recursive backtracking procedure with a branch
and bound technique to eliminate searches that cannot lead to a clique. The
recursive procedure is self-referential: finding a clique of length n is accomplished
by finding a clique of length n — 1 and finding another node that is connected to
all the nodes in the clique of size n — 1. This is made possible by defining some
terminating condition, and having the procedure that implements the algorithm
reference itself until the terminating condition is reached. The branch and bound
technique makes use of rules that allow us to determine in advance certain cases
for which possible combinations of nodes and edges will never lead to a clique.

There are three sets that are essential for this algorithm:

1. potential-clique — is the set of nodes where every node is connected
to every other node. Each recursive call will either extend this set by one

node or reduce it by one node.

2. candidates — is the set of candidates that are eligible for addition to the

potential-clique set.

3. already-found — is the set of nodes that have already served as an ex-
tension to the present configuration of potential-clique and are now
explicitly excluded. That is, all possible extensions of potential-clique

containing any point in this set have already been generated.

The algorithm operates recursively on each of the sets by generating all ex-

tensions of a given configuration of potential-clique that it can make with
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the given set of candidates and that do not contain any of the nodes in
already-found in this manner:

At the beginning of each recursive step, the algorithm picks a candidate-node
which becomes part of potential-clique. All nodes connected to the selected
node become candidates for addition to the clique. The algorithm then anal-
yses each node in candidates, making it smaller with each recursive call by
removing all nodes not connected to the selected candidate-node. A necessary
condition for finding a clique, and for finding a completely-connected subgraph,
is that the nodes in the set candidates must all be connected to each other.
That is, at the end of the recursive calls, the set candidates will be empty.
However this does not guarantee that potential-clique is maximal, i.e., it
does not guarantee that potential-clique contains the largest possible set of
nodes where every node is connected to every other node. In order to do so,
the set of nodes that have previously served as an extension for the present con-
figuration of potential-clique is maintained in already-found. This set is
also made smaller with each recursive call by removing all nodes not connected
to the selected candidate-node. If any node in the set already-found is con-
nected to all nodes in candidates, then we know that potential-clique is
not maximal and therefore will not lead to a clique since we have already ob-
served this node in a larger clique. This is the branch and bound step of the
algorithm. In the pseudocode implementation below, we see how the procedure
implementing the algorithm find-cliques references itself in the middle with

the sets new-candidates and new-already-found.
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begin procedure find-cliques(potential-clique, candidates, already-found)

if a node in already-found is connected to all nodes in candidates then
no clique can ever be found (branch and bound step)
else
foreach candidate-node in candidates do
move candidate-node to potential-clique
create new-candidates by removing nodes in candidates not connected to candidate-node
create new-already-found by removing nodes in already-found not connected to candidate-node
if new-candidates and new-already-found are empty then
potential-clique is a maximal-clique
else
find-cliques(potential-clique, new-candidates, new-already-found)
endif
move candidate-node from potential-clique to already-found
endfor
endif

end procedure find-cliques

Initially, the set candidates contains all the nodes in the graph and the
sets potential-clique and already-found are empty. Bron and Kerbosch
select their nodes in a clever manner by choosing nodes with the largest number
of edges to reach the branch and bound condition as soon as possible. This
leads to the larger cliques being found first and generates sequentially cliques
having a large common intersection. More details of this algorithm, including a

pseudocode implementation, are given in [145].

5.2.8 Application to a comparative modelling scenario

In a comparative modelling situation only those main chain and side chain con-
formations that are thought to vary significantly (> 2.0 A RMSD) from the
parent structure are sampled using the methods described above. Main chain
regions that are not thought to vary are simply copied over from the parent.
Side chain conformations thought to be conserved were built using minimum
perturbation (MP) method implemented by the program MUTATE [74]. The
MP method changes a given amino acid to the target amino acid preserving the

equivalent y angles, as determined by an equivalence table between the two side
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chains. The y angles not present in the model are constructed using a library
based on the residue type (Chapter 4).

Using the CF method in comparative modelling leads to a natural definition
for the crossover points. In families of homologous structures, there are usually
regions of main chain that are very similar to each other (C, atoms within 1.0
A of each) and main chain regions that are variable, or represent insertions and
deletions. We define a set of crossover points connecting regions of main chains
built with the CF method and those copied from a parent structure. Figure
5.2 represents a typical scenario in comparative modelling. In cases where we
mix and match between parent structures, we define crossover points based on
a structural superposition. Mixing and matching of main chain regions between
crossover points ensures that for every edge representing a pair of residue con-
formations, the corresponding residue positions have a covalently linked main
chain connecting them.

Once we have a set of possible side chain and main chain choices, we can
generate a graph using the representation described here, and find cliques which

will represent candidates for the final model.

5.2.9 Building side chains in a comparative modelling

scenario

To illustrate how the clique finding method performs in terms of building side
chains, we select a comparative modelling target and a corresponding model
from the First Meeting on the Critical Assessment of Protein Structure Predic-
tion methods (CASP1). The target is the histidine-containing phosphocarrier

protein (hpr) from M. capricolum, which is an 89 residue protein [63]. In the
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model we built for CASP1, 27 of 67 x; angles deviated more than 30° relative
to the experimental structure. We rebuild the 27 side chains using the dis-
criminatory function, side chain sampling, and clique finding methods described
above. We compare the accuracy of building the 27 side chains on the cor-
rect experimentally-determined main chain and on the approximate model main
chain (which is copied over from the parent 2hpr). The side chains are built in
the context of the structure: in the case of building side chains on the correct
experimental structure main chain, the experimental side chain conformations
for the residues not built by the CF method are used. In the case of building
side chains on the model, the side chain conformations as modelled for CASP1
are used for residues not built by the CF method.

For each of the 27 residues, we sample as many conformations as necessary
to ensure that the y angle(s) in a given set of conformations are within 30°
of the experimental y angle(s). That is, we generate all possible side chain
conformations and select different numbers of conformations per residue based
on their negative log conditional probability score in such a way that at least
one conformation is within 30° of the experimental x angle. The rotamer library
approximation we use does this automatically for all but two of the side chain
positions. This means that the maximum accuracy we can achieve in numbers of
X1 angles correctly built is 25/27. In one experiment where we build side chains
on the experimental structure main chain, we include the exact experimental
structure rotamers in the sample space for all 27 residues, as well as rotamers
with values from the library (see Table 5.2). For nineteen of the 27 residue
positions we sample two side chain conformations per residue, for seven positions

we sample three side chain conformations per residue, and for one position we
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sample four conformations per residue. This is the equivalent of systematically

exploring 4! x 37 x 2!% ~ 5 x 107 possibilities.

5.2.10 Mixing and matching between different parent ho-
molog structures

For one of the targets at CASP1, cellular retinoic acid binding protein I (crabpi),
we found after the experiment that certain regions in the closest homolog (mus-
cle fatty acid binding protein; PDB code 2hmb) did not match the experimental
structure as well as the next-to-closest homolog did (cellular retinol binding pro-
tein II; PDB code lopa-A). The C, RMSD between 2hmb, the closest homolog,
and the experimental structure is 2.03 A for the 130 residues that are superim-
posable. The C, RMSD between lopa-A, the next-to-closest homolog, and the
experimental structure is 1.87 A for 130 residues. The C, RMSD between the
final model generated by us at CASP1 (which involved subjectively mixing and
matching between 2hmb and lopa-A) is 1.81 A for the same 130 residues (we
exclude regions that represent insertions in the calculation of this RMSD).

The question then is: given the two parent homolog structures to the crabpi
sequence, can the graph-theoretic clique finding method mix and match between
the structures and produce a model that is as good as, if not better than, the
main chain model built by us at CASP17?

To answer this question, we first define crossover points where mixing between
different parent structures can occur. We do this by performing a structural
superposition between the 2hmb and lopa-A structures and determine ranges
of main chain where the C, atoms are less than 1.0 A to each other. We look

for contiguous stretches of the alignment where the residues are all within 1.0 A
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of each other to define the crossover points. Exceptions to the 1.0 A limit are
handled in a subjective manner by visual inspection of the 2hmb and lopa-A
structures. We define seven crossover points, leading to eight mix and match
regions: 1-20, 21-41, 42-52, 53-73, 74-98, 99-107, 108-122, and 123-140.

Once the two initial models were built, some of the side chains that were
built using the minimum perturbation (MP) method were found to clash in each
of the models. For these fourteen residues, we sampled multiple conformations
per side chain in the two separate initial models and explored all possibilities of
mixing and matching the main chains and the side chains. Only three possible
conformations per residue with the lowest negative log conditional probabilities
for the fourteen positions were chosen due to computational limits. This equates
to exploring 3'* x 2% ~ 10? conformations systematically. All other side chains

were used as constructed by the MP method.

5.2.11 Building regions of main chains (loops) in an in-

terconnected manner

We apply the CF method to a classic problem in building main chain regions,
that of determining the conformation of antibody complementary determining
regions (CDRs). In one experiment, we build the four CDRs on the Fv fragment
of the D1.3 antibody (PDB code 1vfa) [146] simultaneously, sampling only the
one side chain conformation per residue position with the lowest negative log
conditional probability (see Table 5.1 for details about the CDRs being built).
In another experiment, we build two of the CDRs, H3 and L3, simultaneously
sampling the two side chains per residue position with the lowest negative log

conditional probabilities for all residues except the proline in L3. In the former
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CDR Residue range Number of Residues Sequence

H2 158-166 9 MIWGDGNTD
H3 205-212 8 RERDYRLD
L2 47-55 9 LVYYTTTLA
L3 90-97 8 HFWSTPRT

Table 5.1: Details of the four complimentary determining regions (CDRs) built
in the D1.3 antibody (PDB code 1vfa) using the clique finding (CF) method.
The name of the CDR, the range of residues built, the number of residues, and
the sequence are given.

case, the number of possible choices available is the total product of the number
of main chains generated for all the loops using the database method for each of
the CDRs. In the latter case, the number of possible choices available is the total
product of the number of main chains generated using the database method for
the H3 and L3 CDRs times 2'® (there is only a single conformation for the proline
residue in the L3 CDR). In both these cases, the environment of the experimental
structure was used to build the CDRs. The database search found 168, 216, 176,
and 166 main chain conformations for the H2, H3, L2 and L3 CDRs (Table 5.4).
This is the equivalent of systematically exploring 168 x 216 x 176 x 166 ~ 10°
conformations in the case of building the four CDRs simultaneously with only

one side chain per residue and 216 x 28 x 166 x 27 ~ 10° conformations in the

case of building the H3 and L3 CDRs with two side chains per residue.

5.2.12 Implementation issues

The graphs are stored as edge matrices of size n X n where n is the number of the
nodes. The size of a single element in the matrix, which represents an edge, is
one byte, and therefore the weight of an edge is limited by the storage capacity

of one byte.
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Ideally, the weight of the clique should be equal to the negative log condi-
tional probability of the conformation represented by the clique, as calculated
by summing the probabilities of all the atom-atom contacts in the conformation.
However, in the summation of the conditional probabilities of the nodes and the
edges, contacts between pairs of atoms in main chain of two residues that are
within four residues of each other are excluded from the counts. In addition, we
also evaluate the conditional probabilities of atomic contacts within a residue
and add it to the weights of the nodes. Both these modifications of the residue-
specific all-atom conditional probability discriminatory function (RAPDF) as
implemented in Chapter 3 have not been evaluated rigourously. We therefore
compared the negative log conditional probabilties of consistent conformations
obtained by summing up weights of the nodes and edges of the clique repre-
senting that conformation, and the negative log conditional probabilities of the
same conformations obtained by calculating the conditional probabilities of the
interatomic contacts as in Chapter 3 by the RAPDF. The comparison is accom-
plished by calculating the two types of negative log conditional probabilities of
100,000 conformations for residues 21-32 in the a-lactalbumin structure (PDB
code lalc) and plotting them against each other (Figure 5.3). The fragment in
a-lactalbumin is proposed to be an independent folding unit as determined by
local hydrophobic burial and experimental evidence [97, 120]. The conforma-
tions represent 100,000 cliques with the best weight obtained after exploring up
to six residues per residue position with a fixed main chain. That is, each of
the conformations represents a different side chain arrangement for the twelve
residues in the independent folding unit.

Figure 5.3 shows that even though the correspondence between the two types
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Figure 5.3: Comparison of the total negative log conditional probabilities ob-
tained by summing the weights of nodes and edges in a clique to those obtained
by summing up the probabilities of all atomic contacts in the 3D conformation
represented by the clique. The negative log conditional probabilities for 100,000
side chain conformations/cliques of an independent folding unit, a-lactalbumin
(residues 21-32) are shown [97, 120]. The horizontal axis is the range of con-
ditional probabilities for the 100,000 cliques as evaluated by summing up the
probabilities of the nodes and the edges. The vertical axis is the range of con-
ditional probabilities for the 100,000 cliques as evaluated by summing up the
probabilities of contacts between atom pairs for each conformation represented
by the corresponding clique by the residue-specific all-atom conditional proba-
bility discriminatory function (RAPDF) as described in Chapter 3.

of conditional probabilities is not perfect, the lowest negative log conditional
probability conformation as evaluated by the RAPDF can be obtained (in this
specific case) by taking ten cliques with the lowest clique weights and recalculat-
ing the conditional probabilities of the conformations represented by the cliques
using the RAPDF. In our implementation, we obtain the top 100 cliques with
the lowest weights, and then reevaluate them using the RAPDF and select the

conformation with lowest negative log conditional probability.

The storage of the top 100 cliques is accomplished through the aid of a queue
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data structure of size 100. Initially, the index of the clique with the lowest weight
in the queue is calculated (if there are no cliques in the queue, then the index
is set to 1). New cliques with lower weights are added to the queue by simply
replacing the clique in the queue with the lowest weight with the new clique and
recalculating the index of the clique with the lowest weight.

In cases where cliques the size of the protein cannot be found due to exclusion
of certain possible residue conformations (nodes) which are inconsistent with the
rest of the nodes, then more or different possible conformations for that residue
position are generated using the sampling methods described in this work so that
the resulting cliques found will be of the size of the protein. Alternately, one
can obtain cliques that are smaller in size than the length of the protein, which
will not contain atomic coordinates for some residues, and either construct those
residue conformations from the set of existing nodes (which will lead to incon-
sistent protein conformations as per our definition) or by using other methods.
In specific cases, pairs of nodes considered inconsistent by the CF method are
explicitly (manually) allowed to form an edge. This is generally necessary when
any consistent conformations the size of the protein cannot be found regardless
of the degree of sampling.

Two residues separated by a large distance in the protein that do not physi-
cally interact with each other have an edge between them. For proteins that are
bigger than, say, 200 residues, this results in a large number of edges per node
and increases the running time of the program. In such cases, we consider only
a limited subset of the protein and omit all residues beyond a certain cutoff (say
20.0 A) from the region we are interested in modelling using the CF method.

When the above implementation issues arose during the course of building
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side chain and main chain conformations using the CF method, they were han-
dled on a case by case basis and are not further discussed in the methods or

results sections in this work.

5.3 Results

5.3.1 Building side chains

For the 27 residues that were built using the CF method in the histidine-
containing phosphocarrier protein (hpr), the percentage error, i.e., the number
of angles that deviated more than 30° after mixing and matching between all the
possible side chains on the experimental structure main chain was 29.6% for v;
angles, and 42.1% for all x angles. The percentage errors for the 27 side chains
on the model main chain was 40.7% for x; angles and 49.1% for all x angles.
When the exact experimental structure rotamer was added to the sample
space, by removing the library rotamer corresponding to the experimental struc-
ture rotamer, the percentage error decreased in the case of the correct main chain
to 25.9% for y; angles and 31.6% respectively for all x angles. For the model
main chain, the percentage error decreased to 31.6% for y; angles and 42.1% for
all x angles. Table 5.2 summarises the results of the side chain construction.
Even when we introduce the correct experimental side chain conformation in
the sample space, we are unable to build the conformations of 7/27 x; angles and
18/57 all x angles. We analyse the eighteen y angles to determine the reason
they were built incorrectly. Table 5.3 shows the results of this analysis.
Thirteen of the y rotamers incorrectly built have an atom with a temperature

factor of more than 30.0 A2, In twelve cases, the side chains are involved in
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Y1 > 30° all y > 30°

(%) (%)
Correct main chain with 29.6 42.1
library rotamers
Correct main chain with 25.9 31.6
correct rotamers
Model main chain with  40.7 49.1
library rotamers
Model main chain with  40.7 42.1

correct rotamers

Table 5.2: Results of side chain construction for 27 residues using the clique find-
ing (CF) method for the histidine-containing phosphocarrier protein (hpr). All
27 side chains had y; conformations that deviated by more than 30° in the model
built by us at the first meeting on the Critical Assessment of protein Structure
Prediction methods (CASP1) relative to the experimental structure. The per-
centage errors for y; and all x angles is given for the cases where the correct
and the model main chains were used to the build side chains conmformations
using the rotamer library described in Table 4.2. The percentage errors is also
given for the cases where the correct and the model main chains were used to
build the side chains conmformations including the experimental conformation
in the sample space. The total number of y; angles considered is 27 and the
total number of x angles is 57. For all residues, the side chain conformations in
the environment when building side chains on the experimental main chain is the
same as in the experimental structure of hpr, and the side chain conformations
in the environment when building side chains on the model main chain is the
same as in the final model of hpr built by us for CASP1.

intermolecular crystallographic contacts of less than 4.0 A, as determined using
the program CONANA [147]. In nine cases, atoms involved in the rotamers are
close to water molecules or the sulphate ion in the experimental structure (which
are not taken into account by our discriminatory function in a direct manner).
All the rotamers built inaccurately may be affected by one or more of these
factors.

The total negative log conditional probability of the protein conformation

with the eighteen incorrectly built rotamers is lower than for the experimental
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X Residue Largest Discrimination Number of Observation

angle B (A%?) ratio xtal contacts
X2 17 24.3 1.01 1 residue on surface of protein
X1 L14 20.5 0.99 3 deviation of 33°
X2 L14 22.7 0.99 3 intermolecular contacts
X1 S30 32.6 0.99 4 high B; intermolecular contacts;
2 H5 O molecules within 3.6 A
X2 136 40.0 0.99 0 high B; residue on surface of protein
X2 N38 42.2 1.01 4 high B; 180° rotation
X1 E39 30.5 1.01 6 intermolecular contacts
X2 E39 35.0 1.01 6 intermolecular contacts
X3 E39 52.2 1.01 6 high B
X1 147 40.5 0.99 3 high B; SO4 ion within 3.8 A
X2 147 40.5 0.99 3 high B; SO4 ion within 4.0 A
X3 M48 69.1 1.01 5 high B; 6.2 A to SO, ion
X1 D66 41.0 1.01 0 high B
X2 D66 45.6 1.01 0 high B; 2 H, O molecules within 3.8 A
X1 N68 46.3 1.01 0 high B; HyO molecule within 4.0 A
X3 Q72 32.9 0.99 8 intermolecular contacts
X1 187 22.8 1.01 0 4 Hy O molecules within 3.0-5.0 A
X2 187 22.8 1.01 0 4 Hy 0O molecules within 3.0-5.0 A

Table 5.3: Analysis of x angles that were incorrectly built for 27 residues in the
histidine-containing phosphocarrier protein (hpr) using the clique finding (CF)
algorithm. The yx angle, the residue number and name (in one letter code),
the largest temperature factor among the atoms defining the y angle, the ratio
of the negative log conditional probabilities between the expermental structure
with the incorrect side chain conformation and the experimental structure with
the correct side chain conformation (a ratio less than 1.0 indicates successful
discrimination in the context of the rest of the structure), the number of inter-
molecular crystallographic contacts less than 4.0 A involving the residue, and
observations regarding influence of water, the sulphate ion, temperature (B)
factors, and number of intermolecular contacts is given.

structure conformation. When single rotamers are considered in the context of
the experimental structure, the discriminatory function is unable to distinguish
correct rotamer from the incorrect rotamer in 11/18 cases, as determined by
the ratios of the negative log conditional probabilities between the experimen-
tal structure with the incorrect side chain conformation and the experimental
structure with the correct side chain conformation (a ratio less than 1.0 indicates
successful discrimination; see Table 5.3). In all but two cases (the two x angles

in isoleucine 87) where the discriminatory function selected the correct rotamer

given the exact experimental structure environment, the temperature factors are
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greater than 30.0 A2 and/or there are intermolecular contacts involving the side
chain of the residue. This is not to suggest that experimental structure is in-
correct or that the discriminatory function is not failing, but that it makes it
difficult to assess what the cause of failure is.

We compare specific contacts involving side chain conformations that were
built using the CF method and the correct experimental side chain conformations
to structurally rationalise why the experimental conformation is preferred over
the built conformation. These contacts are thought to be the most influential in
determining the side chain conformation of the residue of interest.

The xg rotamer of isoleucine 7 varies by 52.5° between the experimental
conformation and the built conformation, one of the two clear non-discrimination
cases. As a consequence, the side chain C,; and Cs; atoms, which are the only
ones that are different in the two conformations, are 1.1 A apart. The Cg; atom
of the isoleucine is in contact with the C,; atom of threonine 9, and the distance
between these two atoms is 3.7 A for the experimental conformation and 4.3 A
for the built conformation.

The situation with the y, rotamer of isoleucine 36, the other clear non-
discrimination case, is very similar. The difference in the x, angle between the
experimental and the built conformations is 53.5° and the side chain C,3 and Cs;
atoms, which are the only ones that are different in the two conformations, are
1.2 A apart. In this case, the C,2 atom of the isoleucine is in contact with the
Cj atom of threonine 62 at a distance of 4.6 A in the experimental conformation
whereas the distance between the same two atoms in the built conformation is
3.5 A

Given the fact that both the side chains (isoleucine 7 and 36) are on the
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surface of the molecule it is difficult to rationalise why one conformation is
preferred over the other. It could be that the experimental conformation has
better packing between the side chain carbon atoms in the isoleucine residues
and the side chain carbon atoms in the threonine residues, compared to the built
conformation.

In the case of the x, rotamer in asparagine 38, which is also present on
the surface, the nitrogen and oxygen atoms in the side chains are in opposite
positions to each other (the y, angle is rotated by 180° in the built side chain
relative to the experimental conformation). In the experimental structure, the
distance between the Os; atom of the asparagine and the N atom of lysine 40
is 3.4 A, whereas in the built conformation, the Nj; atom the of asparagine and
the N¢ atom of the lysine are at a distance 3.7 A, resulting in a contact with bad
electrostatics.

In the case of isoleucine 87, where the side chain is partially exposed, the
x1 angle differs by 225.3° (a complete turn around) in the built conformation
relative to the experimental and the y, angle differs by 55°. In this case, the
contacts between the Cs; and the C,; atoms in isoleucine 87 and the Cs; and
the C,; atoms in isoleucine 82 appear to be more well packed in the case of the
experimental conformation compared to the built conformation.

The conformations of threonine 9 and 62, lysine 40, and isoleucine 82 are not
among the 27 conformations that were built using the CF method and actually
represent the experimental structure conformation.

In all the above cases, the specific contacts mentioned above in experimental
conformation have lower negative log conditional probabilities compared to the

same contacts in the built conformation. However, the total negative log con-
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ditional probability in the built conformation is lower when summed over many
other contacts between the atoms in the environment and the side chain atoms
relative to the experimental structure in the case of isoleucine 7, asparagine 38

and isoleucine 87.

5.3.2 Mixing and matching between homologs

The C, RMSD of the structure of the cellular retinoic acid binding protein I
(crabpi) we modelled for the first meeting on the Critical Assessment of protein
Structure Prediction methods (CASP1) relative to the experimental structure
for the 130 residues (excluding insertions) was 1.80 A. The C, RMSD of the
conformation built by mixing and matching between the two templates using
the CF method was 1.66 A for the same 130 residues.

The theoretical limit for the C, RMSD of mixing and matching between the
main chains given the designated crossover points is 1.54 A. This is determined by
considering the C, RMSDs of the conformations created by mixing and matching
between the two crabpi homologs for all the 2% = 256 possibilities relative to the
experimental structure.

The optimal conformation (in terms of C, RMSD) contains clashes because
the side chains are built using the MP method, and has a worse (higher) energy
than the conformation built by the CF method. This shows that side chain
building is also necessary in order to mix and match between template struc-
tures before a discriminatory function can accurately identify the lowest RMSD
conformations.

The difference between the CF built structure and the optimal conformation

1s in two segments, residues 1-20 and 21-41. These should have been selected from
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lopa-A, the next-to-closest homolog, but are selected from 2hmb, the closest
homolog. The C, RMSDs for these two segments in 2hmb relative to the crabpi
experimental structure are 1.2 A and 2.4 A respectively. The C, RMSDs for
these two segments lopa-A relative to the crabpi experimental structure are 0.9
A and 1.9 A respectively. There are 21 residues involved in clashing contacts in
the optimal conformation, and the multiple side chain conformations for twelve
of these residues are not explored by the CF method to build the mix and match
model. One of the residues involved in a clash in the optimal conformation is
proline 2 which clashes with tryptophan 88 (which is a conserved residue with
the correct conformation in the two initial models), and since we do not sample
multiple positions for proline residues, the segment containing that residue (1-20)

will never be selected from the lopa-A-based initial model.

5.3.3 Building regions of main chain

Table 5.4 shows the C, RMSDs for the four CDRs in the situation where they
were built simultaneously with only a single side chain conformation sampled
per residue and the RMSDs for the H3 and L3 CDRs where they were built
simultaneously sampling two side chain conformations per residue. Also listed
are main chain (N, C,, C, O) and all atom RMSDs for the structures so they
can be compared to other methods constructing the CDRs. The conformations
of the H3 and L3 loops built using the CF method in two different experiments
are identical as far as the main chain is concerned. The largest C, RMSD
is 1.33 A and the largest main chain RMSD is 1.42 A among the four CDRs
between the built conformation and the experimental structure based on a global

superposition of the framework upon which the CDRs were built.
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CDR Number of main Coa RMSD C, RMSD Main chain All atom

chain conformations range (A) (A) RMSD (A) RMSD (A)

One side chain per residue

H2 168 0.40 - 6.23 1.33 1.42 1.94

H3 216 0.59 - 543 1.01 1.20 2.43

L2 176 0.66 - 5.28 1.10 1.54 2.67

L3 166 0.70 - 5.24 0.86 1.13 2.70

Two side chains per residue

H3 216 0.59 - 543 1.01 1.20 2.65

L3 166 0.70 - 5.24 0.86 1.13 2.78

Table 5.4: Results of simultaneously building complimentary determining regions
(CDRs) in the D1.3 antibody structure using the clique finding (CF) method.
The name of the CDR, the number of main chain conformations sampled, the C,
RMSD range of the conformations sampled, and the C,, main chain (N, C,, C,
0), and all atom RMSDs of the conformation selected using the CF method is
given. The results are given for two experiments, where four CDRs (H2, H3, L2
and L3) were built simultaneously with one side chain per residue and where two
CDRs (H3 and L3) were built simultaneously with two side chains per residue
(see Figure 5.4).

The largest all atom RMSD is 2.70 A for any single loop when the four
CDRs are built simultaneously sampling only a single side chain conformation
per residue. However, when two side chain conformations per residue are sam-
pled when building the H3 and L3 CDRs, the all-atom RMSD increases slightly.
Five side chain conformations are different in the two situations. Analysing the
accuracy of each residue individually, three side chain conformations (phenlyala-
nine 91, arginine 207, and leucine 211) are built with a higher side chain atom
RMSDs (relative to the experimental structure) and two side chain conforma-
tions (histidine 90 and arginine 210) are built with lower side chain atom RMSDs
when multiple side chain conformations are sampled (leading to an overall higher
side chain atom RMSD when multiple conformations are sampled). The dis-
criminatory function is unable to distinguish, in the context of the approximate

environment, the side chain conformation with the lower RMSD for these three
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cases. However, when the correct experimental main chain conformation is used
to build side chains for all these three residues using only the local main chain
information, then both phenylyalanine 90 and leucine 211 are built within 30°
of all the experimental x angles for those residues. In the other case, where the
side chain atom RMSD is higher when multiple side chain conformations are
sampled (arginine 207), the conformation in the experimental structure may be
influenced by the presence of large (> 50.0 A2) temperature factors in the side
chain atoms.

The C, and all-atom RMSDs for all the four CDRs (34 residues) relative to
the experimental structure as found by the CF method when sampling single
side chain conformations per residue position are 1.10 A and 2.46 A (see Figure
5.4). The best all-atom atom RMSD that can be obtained, given our rotamer
library approximation, and using the database main chain conformations, for all
the four CDRs, is 1.71 A.

The database used to search for main chain conformations contained sev-
eral antibody conformations but did not include D1.3 antibody structures. The
source of the conformations selected by the CF method for each of the four
loops in the two different situations are given in Table 5.5. Loops from other

antibodies are selected only in the case of the L3 CDR.
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CDR  Loop source (PDB code Residue range Sequence Sequence

and name of protein) in source of source of CDR
One side chain per residue
H2 1tgs - Trypsinogen 143-151 NTKSSGTSY MIWGDGNTD
H3 Inpx - NADH peroxidase 329-336 LAVFDYKF RERDYRLD
L2 laaz - Glutaredoxin 36-44 IMPEKGVFD LVYYTTTLA
L3 1rei - Immunoglobulin 90-97 QYQSLPYT HFWSTPRT
Two side chains per residue
H3 Inpx - NADH peroxidase 329-336 LAVFDYKF RERDYRLD
L3 1rei - Immunoglobulin 90-97 QYQSLPYT HFWSTPRT

Table 5.5: Details of the sources for the four complimentary determining regions
(CDRs) built using the clique finding (CF) method. The name of the CDR, the
source (PDB code and name of protein) of the main chain selected by the CF
method, the range of residues in the source that matched the selected conforma-
tion, the sequence of residues in the source, and the sequence of the CDR in the
D1.3 antibody is given.
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L3 (0.86 A)
L2 (1.10 A)

H2 (1.33 A)

H3 (1.01 A)

Figure 5.4: Comparison of conformations built (white) using the clique finding
(CF) method to the experimental structure (black) for four complimentary de-
termining regions (CDRs) in the D1.3 antibody. Shown are C, traces of four
CDRs, H2 (residues 158-166), H3 (residues 205-212), L2 (residues 47-55) and L3
(90-97) which were built simultaneously using the CF method. The individual
Co RMSDs of the CDRs are 1.42 A, 1.01 A, and 1.10 A and 0.86 A for each of
the CDRs with an overall C, RMSD of 1.10 A for all the 34 residues relative
to the experimental structure. The C, RMSDs do not include the root residues
and are based on a global superposition.
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Experiment Number of conformations CPU Time

(hh:mm:ss)
Side chain building on hpr ~ 5 x 10° 31:02:14
Mixing and matching crabpi templates ~ 10° 18:01:42
Building all four CDRs simultaneously —~ 10° 33:12:37
with one conformation per residue
Building two CDRs with two ~ 10° 37:29:34

conformations per residue

Table 5.6: Computation times of the clique finding (CF) method for the three
comparative modelling scenarios described in this chapter. The name of the
experiment, the number of conformations in the sample space, and the CPU
time (hh:mm:ss) as measured using the “time” command on a Silicon Graphics
(SGI) Challenge workstation is given.

5.3.4 Computation times

The computation time of this method is proportional to the density (number
of edges per node) of the graph. Each graph representing various possibilities
for a given structure varies in density. The times, determined using the “time”
command in an Unix system for performing the computations of the various
experiments are given in Table 5.6. All times were calculated on a multi-user
Silicon Graphics (SGI) Challenge workstation utilising a single R10000 processor.
In general, finding a consistent structural arrangement of residues in an amino
acid sequence with the lowest negative log conditional probability, sampling one
billion to ten billion (10° — 10'°) possible conformations, can be accomplished

within a 24-48 hour period.
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5.4 Discussion

5.4.1 Building side chain conformations

The graph-theoretic clique finding (CF) method described here is a search meth-
od that allows the exploration of a large number of possible conformations of
a protein. The accuracy of the side chain construction made in this exercise
depend on the discriminatory function used. In the case of histidine-containing
phosphocarrier protein (hpr), a target for which we constructed a model at the
first meeting on the Critical Assessment of protein Structure Prediction meth-
ods (CASP1), we rebuild the 27 residues with incorrectly built y; angles in the
model (Chapter 2). Using the CF method improves the results in terms of per-
centage error in the y; angles for the 27 residues by at least 60%. Many of these
residues represent drastic amino acid substitutions (alanine to the phenylalanine,
for example) and since it is in those cases that the conventional minimum pertur-
bation method generally fails, the CF method should be used. The CF method
complements existing comparative modelling methods, to build side chain con-
formations by performing some limited combinatorial searching. While we know
from CASP1 that even conformations of conserved amino acid substitions can
change between related proteins 25% of the time (Chapter 2), achieving this
level of accuracy in a comparative modelling situation is our first goal.

We also build side chain conformations for hpr using the experimental struc-
ture main chain. The improvement when sampling multiple (2-4) side chain
conformations per residue position compared to using a single side chain con-
formation with the lowest negative log conditional probabilities for the contacts

between atoms within the side chain to the atoms in the local main chain (4 four
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residues) is not significant: the percentage error of x; and all y rotamers built
incorrectly (> 30° relative to the experimental structure) decreases only 3.7%
and 5.2% respectively when multiple side chain conformations are sampled.
Modelling side chains on the experimental main chain does not represent
a realistic scenario. We know from previous studies that side chain building
accuracy in a comparative modelling situation decreases rapidly as the main
chain varies [60]. We have shown in Chapter 4 that the side chain building
method we employ here in conjunction with the CF method is comparable to
other side chain building methods in the literature where the results are described
for rebuilding side chains on the experimental structure main chain [50, 51, 52,
53]. Using the CF method to sample multiple side chain conformations using the
method in Chapter 4 does not improve side chain building accuracy significantly
when rebuilding side chains on the experimental structure main chain. However

it does improve side chain construction when an approximate main chain is used.

5.4.2 Mixing and matching

The utility of mixing and matching between template parent structures to con-
struct a model that is better than simply copying the coordinates of a single
parent structure has been shown before [49].

At the first meeting on the Critical Assessment of protein Structure Predic-
tion methods (CASP1), the closest homolog to the cellular retinoic acid binding
protein I (crabpi), the muscle fatty acid binding protein (PDB code 2hmb) was
generally used by the different groups participating to model the main chain for
all residues (excluding insertions in the alignment between crabpi and 2hmb) [8].

In this case, the main chain of 2hmb can be mixed and matched with another
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homolog (cellular retinol binding protein II; PDB code lopa-A) to produce a
template model structure with a lower RMSD to the crabpi experimental struc-
ture than using either of the homologs by itself. The CF method used to mix
and match between the two different templates was done without any manual in-
tervention, and can be used in a comparative modelling scenario where multiple
template/parent structures are available for modelling.

Identification of the best model by mixing and matching between regions in
the initial model using a discriminatory function is not trivial. In our case, the
side chains in the environment were approximate and the initial models were

missing atomic coordinates for regions of insertions.

5.4.3 Building main chain regions

The results shown in Tables 5.4 and 5.5 compare favourably with the results
for building the antibody complimentary determining regions (CDRs) on a D1.3
antibody structure using the most homologous canonical loops in other antibody
structures [58]. For D1.3, Pedersen, et. al report main chain (N, C,, C, O)
RMSDs of 1.41, 0.93, and 1.14 for the H2, L2, and L3 CDRs using canonical
construction. However, the only case where the CF method selects a main chain
conformation from another antibody (PDB code 1rei) is with L3, where it finds a
match of the same CDR with a similar sequence (Table 5.5). All selections were
made on the negative log conditional probabilities and no homology information
was included.

The main chain RMSDs reported by Pedersen, et. al. [58] show that the
CF method is not the only way conformations with low main chain RMSDs can

be built for antibody CDRs. However, the example we choose illustrates how
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the method can be used to build side chains and main chains simultaneously
for regions in a protein that are non-local in sequence but interacting with each
other in the native conformation. Due to the limited sampling of the side chain
conformations, it is not possible to build conformations with an all-atom RMSD
of ~ 1.0 A, and therefore better side chain sampling algorithms need to be
developed.

Using the database method to sample main chain conformations in this par-
ticular case makes use of a knowledge-based component for building antibody

loops.

5.4.4 Sampling side chains and main chains

We have used a side chain sampling method that we developed in Chapter 4
based on selecting the most probable conformation using only the local main
chain and using a well-established main chain sampling procedure based on a
database search [57, 58]. However, side chain and main chain conformations that
need to be sampled can be generated by any means. The number of possibilities
that can be handled is limited, and to overcome this, we apply this method in
a comparative modelling scenario where distinct structurally context-sensitive

units can be built separately.

5.4.5 Tractability and complexity of clique finding

Clique finding in a graph is an NP-hard problem with a worst-case estimate of
O(3"/3), where n is the number of nodes in the graph [148, 145, 149]. The big-O
estimate indicates that even the best algorithm for finding all the cliques in a

graph will take at least k x 2%/ time, where k is some constant, in the worst
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case. For building the main chains and side chains at CASP2, a typical graph
had around 5000 nodes and we were able to search graphs with 30,000 nodes
using an SGI Challenge R10000 workstation within a 24-hour period. None of
the graphs we have encountered represent worst-case scenarios, i.e., they do not
take time in the order of 3", where n is the number of nodes. This is presumably
due to the nature of the representation and its relation to protein structure,
and illustrates that big-O and NP-hard estimates, which apply in the worst case

scenarios, are not necessarily relevant to biological problems.

5.4.6 Choice of the Bron and Kerbosch algorithm for

clique finding

There is no rigourous proof of the time taken for the Bron and Kerbosch algo-
rithm in the average case scenario, but plots given in [145] show that it works well
in practice. In one test case, the authors generate a number of random graphs
and the computing time per clique remains linear in the size of the graph. In
a second test case where special graphs of size 3 x n, which contain the largest
number of cliques per node, are used, the computing time is proportional to 3.14"
ms, where 3" ms would be the theoretical limit for these graphs [148, 145, 149].

In the case of a practical application involving graph-theoretical techniques
to compare protein structures, this algorithm is reported to produce the best
performance among several different clique finding algorithms [144]. Also, as we
will demonstrate in the next chapter, this algorithm seems to perform well in

the case of realistic homology modelling problems.
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5.4.7 Sizes of problems that can be handled in reasonable

amounts of times

Tables 5.6 and 6.6 give an indication of the sizes of problems that can be handled
using the CF method. The size of problem generally depends on the number of
residues being built, and the number of main chain and side chain possibilities
considered. In general, the CF method can handle problems that are the equiv-
alent of exhaustively sampling 10? — 10'° possible conformations of a protein in

a 24-48 hour period on an SGI Challenge (R10000 processor) workstation.

5.4.8 Advantages of this method compared to conven-

tional search methods

There are three primary advantages of this method to traditional methods that
search conformational space in proteins: First, the calculation of the fitness of a
conformation is extremely fast. Since the weights are precalculated in advance for
the nodes and the edges, the weight of a clique is calculated simply by summing
the edges of the nodes. For this to be useful, the discriminatory function that
allows the calculation of weights must work in a pairwise manner and must
be additive [101, 102, 103, 104]. Second, inconsistent conformations are never
evaluated for their weights and are rejected in advance—i.e., they are never found
as cliques in the graphs. This has the advantage in that the density of the graph,
and consequently the speed of the algorithm, can be controlled by applying
filters to eliminate edges before clique finding occurs. Third, the conformations
represented by the cliques are found in a discrete manner (depending on the main

chain and side chain sampling) and this allows the method to “jump through”
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conformational space without regard to energetic barriers and ensures it does
not get stuck in local minima. Finally, in a comparative modelling situation,
there is the advantage of this method in that it takes into account the context

of the environment when building main chains or side chains.

5.4.9 Limitations of this method

The foremost limitation of this method is in the fact that clique finding itself
is an intractable problem computationally. Even though the worst-case big-O
estimate does not apply in the cases we encounter, the size of problems that can
be solved with current computing abilities is limited to the equivalent of exploring
10'° conformations. Also, as mentioned earlier, the discriminatory function used
must be able to represent weights of nodes and edges independently of other
nodes and edges [101, 102, 103, 104, 105, 106, 107, 108, 109, 111]. This eliminates
discriminatory functions that base their calculation of strengths of interatomic
contacts in a context-sensitive manner, such as discriminatory functions that

use the accessible surface area of atoms as a measure of solvation preference

[102, 103, 104, 119, 120].

5.5 Summary

The interconnected nature of interactions in protein structures appears to be
the major hurdle preventing the construction of accurate homology models. We
present an algorithm that uses graph theory to handle this problem. Each pos-
sible conformation of a residue in an amino acid sequence is represented using

the notion of a node in a graph. Each node is given a weight based on the
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degree of the interaction between its side chain atoms and the local main chain
atoms. Edges are then drawn between pairs of residue conformations/nodes
that are consistent with each other (i.e., clash-free and satisfying geometrical
constraints). The edges are also weighted based on the interactions between the
atoms of the two nodes. Once the entire graph is constructed, all the maximal
sets of completely connected nodes (cliques) are found using a clique finding
algorithm. The cliques with the best weights represent the optimal combina-
tions of the various main chain and side chain possibilities, taking the respective
environments into account. The algorithm is used in a comparative modelling
scenario to build side chains, regions of main chain, and mix and match between
different homologs in a context-sensitive manner.

In the next chapter, we assess the predictive power of this approach by apply-

ing it to blind tests where the experimental structure is not known in advance.
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Chapter 6

Handling context-sensitivity in protein
structures using graph theory: bona

fide prediction

6.1 Introduction

Comparative models of five structures, polyribonucleotide nucleotidyl s-trans-
ferase (pnsl/target 4; 76 residues [150]) from E. coli, neurocalcin delta (ncd/-
target 7; 193 residues) from B. taurus, cucumber stellacyanin (csc/target 9;
109 residues [151]) from C. sativus, ubiquitin conjugating enzyme (ubc9/target
24; 158 residues [152]) from M. musculus, and endoglucanase I (egi/target 28;
371 residues [153]) from T. reesei, were built. We used the graph-theoretic
clique finding (CF) method described in Chapter 5, in conjunction with the
discriminatory function and side chain sampling method described in Chapters
3 and 4 to build some side chains and main chain segments after constructing
an initial model by copying a subset of the atomic coordinates from the parent

structure(s).
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6.2 Methods

6.2.1 Search for parent sequences with known structure

Target protein sequences were obtained from the web page provided by the
CASP2 organisers [154]. A basic BLAST search [155], using the program blastp
and the default BLOSUMG62 scoring matrix, was performed on the PDB [113] to
identify parent sequences with known structures that are related to the target
sequence.

In one case, pnsl/t4, where no apparent homology could be detected by con-
ventional sequence searches, distantly related sequences with known structure
were found using the Hidden Markov Model (HMM) package HMMER [156]. A
maximum discrimination HMM was first constructed from a multiple sequence
alignment of seventeen sequences related to the pnsl/t4 family. The multiple se-
quence alignment was obtained from the PredictProtein server [157], which uses
the MaxHom program [158] for performing sequence alignments by extracting all
sequences in the Swissprot sequence database [159] that have a percentage iden-
tity of 30% or more to the sequence submitted. The HMM, which is a statistical
model of the sequence variability at each position in the pnsl/t4 multiple se-
quence alignment, was then aligned using the Smith/Waterman algorithm [160]
to the set of sequences in the PDB using HMMER. The two highest scoring

sequences based on this alignment were considered to be distant homologs.

6.2.2 Sequence and structure alignment

Multiple sequence alignments were generated with the AMPS package [70, 71].

The AMPS-derived alignment was used to identify regions of sequence variability
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within the target sequence family. AMPS pairwise alignments were also used to
determine the degree of sequence identity between the target sequences and the
parent sequences with known structure (see Table 2.1). The default PAM250
mutation matrix and a length independent gap penalty of 8.0 were used. In the
case of target sequences with multiple parent structures, structural alignments
between the parent structures were generated using the G program [72]. These
structural alignments were used to examine the structural variation at a given
residue position to determine regions that are structurally conserved and regions
that are not. The structure and sequence conservation for each residue was
examined to identify main chain regions that might require rebuilding.

Visual inspection of the initial AMPS alignments revealed regions in two
cases (pnsl/t4 and egi/t28) where we thought the alignment was dubious. The
alignment in these regions was adjusted manually.

In the case of pnsl/t4, an insertion of two residues in pnsl/t4 relative to
lesp in the sequence alignment was moved from residues 9-10 to residues 17-18,
because the AMPS alignment placed the insertion in the middle of a (-strand.
The single residue insertion at residue 21 was moved to residue 26 for the same
reason (see Figure 6.1a).

For egi/t28, we noticed that aligning an identical stretch of four residues
with sequence QNGV (residues 275-278 in egi/t28; see Figure 6.1e) between the
target sequence and the parent sequence led to a higher degree of percentage
sequence identity for the entire alignment. We therefore made this correction by

introducing an insertion and a deletion as shown in Figure 6.1e.
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6.2.3 Construction of an initial model

Following the sequence alignment, for each parent structure, an initial model was
generated by copying atomic coordinates for the entire main chain (excluding
any insertions) and for side chains where the residues that represent sequence
identities from the parent structure. Residues that differ in sequence were con-
structed by mutating the residues using a minimum perturbation (MP) technique
implemented by the program MUTATE [74]. The MP method changes a given
amino acid to the target amino acid preserving the values of equivalent y an-
gles between the two side chains. The y angles not present in the model are

constructed by MUTATE using an internally developed library based on residue

type.

6.2.4 General description of the graph-theoretic clique

finding approach

Each possible conformation of a residue represents a node in the graph. Residues
can have different main chain and side chain conformations. The nodes are
weighted based on the strength of the interaction between pairs of atoms within
the residue side chain and between the side chain and the local main chain atoms.

Edges are drawn between every pair of residue conformations if there are no
clashes between atoms of the interacting residues and if the interaction between
the two residues is covalently acceptable. A clash is said to occur if there are two
non-hydrogen atoms, belonging to two different residues, with a contact of less
than 2.0 A. Contacts between pairs of atoms in the main chain of neighbouring

residues are not evaluated for clashes. If the interaction weight of a side chain
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with the local main chain is extremely positive (> 10.0), then an edge is not
drawn between the nodes. If two residue positions are within one main chain
region being built, then both their conformations must be connected by a single
covalently linked main chain conformation before an edge can be drawn between
them. Edges are also not drawn between different possible conformations of the
same residue.

Once a graph representing the various possible side chains and main chains
is constructed, we search for maximal completely connected graphs (cliques).
Cliques the size of the target structure (which are largest sized cliques that can
be found in this representation) represent self-consistent arrangements of the
individual amino acid conformations. That is, they represent possible candidates
for the final structure. The clique with the best weight is taken to represent the
correct conformation. In practice, only a subset of residues can be constructed
because of computational limitations. A full description of the method is given
in Chapter 5.

There are four main components to the implementation of the CF method

for structure prediction. They are:
e A discriminatory function for assigning weights to nodes and edges.
e A method for sampling side chain conformations.
e A method for sampling main chain conformations.

e A method for finding cliques.

In a comparative modelling scenario, only those main chain and side chain

conformations that are thought to vary from the parent structure are built using

this method.
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6.2.5 Description of discriminatory function

Our objective here is to assign weights to nodes and edges by determining the
strength of the interaction of a side chain in a node to the local main chain
and by determining the strength of interaction between two nodes/residues that
form an edge. To do this, we use an all-atom distance dependent conditional
probability-based discriminatory function which is used to calculate the proba-
bility of contacts of a given distance between pairs of atom types in a protein
conformation. A detailed description of this formalism is given in Chapter 3.
The weight of an edge or a node is assigned by summing over the conditional
probabilities of the appropriate atomic contacts. In the case of a node, it is the
set of interatomic distances between the side chain conformation and the local
main chain, and distances between atom types within a residue. In the case of
an edge between nodes, it is the set of distances between pairs of atoms in the

two residues.

6.2.6 Building side chain conformations

Multiple side chain conformations for a given residue position were generated
by exploring all the possible side chain conformations given the rotamer library
approximation and selecting the most probable conformations based on the inter-
actions of a given conformation with the local main chain. For each x angle in a
side chain conformation, up to three rotamers were considered using the rotamer
library in Table 4.2. For each possible side chain conformation, the interactions
between the atoms within the side chain and between the side chain and the local
main chain (£ four residues, total of nine, where available) were evaluated using

the conditional probability discriminatory function described above. The side
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Name of Number of Number of

target side chains conformations

egi/t28 18 63 x 43 x 37 x 25 ~ 10?
ubc9/t24 18 6% x 5% x 4% x 37 x 25 ~ 10°
csc/t9 15 6% x 5% x 3? ~ 6 x 10®

Table 6.1: Details of side chain sampling for three CASP2 targets. For each
target (egi/t28, ubc9/t24, csc/t9), the number of side chains and the number
of conformations explored is given. All side chains were built on main chain
that was copied from the parent structure. The total number of side chain
conformations explored is calculated by taking the product of the number of side
chain conformations explored per residue (specified by the mantissas in column
3) for all residues whose side chains were built using the CF method (specified
by the sum of the exponents in column 3) in the context of the rest of the model.
For example, in the case of egi/t28 three residues with six conformations each,
three residues with four conformations, seven residues with three conformations
and two residues with five conformations each were used to construct the graph
which was handed over to the CF method.

chain conformations with the lowest negative log conditional probability were
taken to represent the most probable conformations. A detailed description of
this side chain sampling method is given in Chapter 4.

Fifteen (in the case of csc/t9) to eighteen side chains (in the case of ubc9/t24
and egi/t28) were identified by a preliminary environmental analysis of the ini-
tial model as positions for sampling. The environmental analysis was performed
visually using interactive computer graphics, identifying side chains with im-
plausible packing, clashes, and unfavourable electrostatic interactions (hydrogen
bonding, salt bridges) with other side chains and/or main chain. Between two
to six different most probable side chain conformations were built for each such
residue position. The optimal arrangement of the fifteen to eighteen side chain
conformations sampled was determined using the CF method in the context of
the rest of the initial model. Table 6.1 gives the details of side chain sampling

for each target.
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6.2.7 Building main chain conformations

In two cases (csc/t9 and egi/t29), the initial model with the CF built side chains
was used as a template for building regions of insertions, deletions, and regions
of suspected main chain uncertainty. In one case (ubc9/t24), two initial models
were created from the two different parent structures (PDB codes laak and 2uce).
Main chain regions selected for rebuilding were deleted from the initial models.
The side chains for these models were built using the MP method for all but ten
side chains, where two side chain conformations per residue position were built
using the side chain sampling method described in the previous section. A total
of thirteen main chain regions from these two models were mixed and matched
using the CF method. A graph was constructed based on these possible main
chain and side chain conformations and was searched for maximal completely
connected subgraphs representing plausible conformations of the model given
the side chain and main chain choices per residue position. The conformation
represented by the clique with the lowest negative log conditional probability
was used as a template for further building of main chain regions.

For three regions (csc/t9 residues 1-2, 106-108; ubc9/t24 residues 164-166),
main chains were sampled using a simple combinatorial main chain grid search,
with a 60 degree grid. Since only the terminal residues were built in this manner,
there is only one root residue flanking the region being built in the initial model.
The conformations obtained from the grid search were fitted on to the N, C,, C,
0, and Cg atoms of the root residue. In the case of csc/t9 residues 1-2, residue
two was built manually in an extended conformation on the initial model using
the program QUANTA [76] and the conformations from the grid search were

fitted using N, C,, C, O, and Cg atoms of the manually built residue position.
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The ninteen other main chain regions were built by searching a database of
main chain regions using distance constraints from the parent structure [58]. The
matching main regions were positioned in the model structure using the method
of Martin, et. al. [57].

Once the rebuilt main chain regions were sampled, side chain conformations
within the main chain and 2-10 side chain conformations that were believed
to be in contact with the main chain being built were also sampled using the
methods described in the previous section. In five cases, multiple regions of
insertions and deletions were built simultaneously. The optimal arrangement of
the possible side chains and main chains was determined using the CF method by
selecting the conformation corresponding to the clique with the lowest negative
log conditional probability. Further detail on the main chain sampling for the
22 main chain regions is given in in Tables 6.6 and 6.5, along with the results of

the prediction.

6.2.8 Clique finding

Clique finding was accomplished using the Bron and Kerbosch algorithm [145]

as implemented in Chapter 5.

6.2.9 Model refinement

The final models produced by the cliques were energy minimised for 100 steps
using the steepest descent method and either the CHARMM or Discover po-
tentials without electrostatics [76, 75]. This procedure was intended to remove
steric clashes and to produce acceptable bond lengths and angles rather than

change the conformation significantly.
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Structure Source Function Sequence Resolution  Reference
(PDB code) identity  (A)
(%)

Neurocalcin delta - ncd/t7
1rec B. taurus calcium sensor 51.3 1.9 [161]

Endoglucanase - egi/t28

1cel T. reeset cellobiohydrolase 49.0 1.8 [162]
Ubiquitin conjugating enzyme - ubc9/t24

laak A. thaliana ubiquitin conjugating enzyme  40.4 2.4 [163]
2uce S. cerevistae  ubiquitin conjugating enzyme  37.8 2.7 [164]
Cucumber stellacyanin - csc/t9

2cbp C. sativus cucumber basic protein 33.6 2.5 [165]
Polyribonucleotide nucleotidyltransferase - pns1/t4

lcsp B. subtilis cold shock protein 27.2 2.5 [166]
1mjc E. coli cold shock protein 23.1 2.0 [167]

Table 6.2: Percentage sequence identity between the target sequence and other
homologous sequences with known structures for CASP2 targets, based on the
alignment used for building the comparative models (the percentage identity
based on the correct structure-based alignment is given in Figure 6.1). For each
structure, the target name and numbers are given, along with details of the
known homologs.

6.3 Results

6.3.1 Sequence alignment

Table 6.2 shows the parent structures that were selected for each family and
the percentage identity to the target sequence as determined by the alignment
used for constructing the initial models. In one case, ncd/t7, the experimental
coordinates are not available to us at this time; the accuracy of model building
for that target will be evaluated at a later date.

To judge the accuracy of the alignments, we compare the alignment generated
by a structural superposition of the parent structure and the target experimental
structure to the sequence alignment used in the modelling exercise.

For three of the proteins (pnsl/t4, csc/t9, and ubc9/t24), neither the final
alignments nor the initial AMPS alignments (which are identical in the case

of csc/t9 and ubc9/t24) agree with those produced by structural superposition
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of the target experimental structures with the respective parent structures. A
comparison of the alignment differences in non-loop regions identified by the
comparative modelling evaluation program [168] is shown in Figure 6.1a-d. Fig-
ure 6.1le shows an example of a hand-corrected AMPS alignment that is correct.

In the case of pnsl/t4 (Figure 6.1a) the alignment used for model building is
incorrect for more than 50% of the residues, even though the proteins are related
(the structural alignment between the parent and target structures results in a
Ca RMSD of 2.52 A for 64/67 residue positions that are aligned; see Figure AT).
Given such an alignment error, the rest of the model building process is doomed
to failure. The results of main chain and side chain building for pnsl/t4 is thus
not discussed in detail.

In two other cases (csc/t9 and ubc9/t24; Figure 6.1b and 6.1¢), the AMPS-
generated alignments were incorrect for one region in each structure.

The “alignment difference” in egi/t28 (Figure 6.1d), residues 49-70, illus-
trates that structure-based alignments are not necessarily meaningful. What is
identified as an alignment error by the comparative modelling evaluation pro-
gram 1is not really an error, but rather an example of a large main chain shift
(with a C, RMSD of 4.85 A for the 21 residues). The structural alignment be-
tween the parent and the target experimental structures is meaningless in this
region.

The alignment correction in egi/t24 (Figure 6.1e) underscores the importance
of visual inspection. The C, RMSD between the model constructed using the
AMPS alignment and the target experimental structure is 4.24 A for the 292
main chain positions that were copied from the parent. The C, RMSD between

the model constructed using the hand-corrected alignment and the target exper-
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(a) t4: pnsl vs. sc alignment differences (residues 1-6)

Correct: 19.6%

AEIEVGRVYTKWRIV-DFGAFVA-IG-GGKEGLM SQ ADKRVEKVTDYQMS@EVPVKVLEVDRG@RIRL-SIKEA-—
——————— MLEGK\KWFNSEGFGFIEVEGQDDVFWHFSAI QGEGFK-T--EEEGQAVSFEI-VEGNRG-PQAANVT-KEA

Final: 26.9%

AEIEVGRVYTGKVTRIVIFGAFVAIGGGKEGNVH SQ ADKRVEKVTDYQMGEVPVKVLEVDRQGRIRLSIKEA
——~MLEXVKWFNSEKG+GFIEVE- GQDDVFH-SAI QGEGFKT---EEEGQAVSFEIV EGNRGPQAANVREA

(b) t9: csc vs. 2cp alignment differences (residues 60-B

Correct: 32.6% Final: 33.6%
CNFVNSDNDVERTSPVIHDELG CNFVNSDNDVERTSP¥R.DELG
CNTPAGAKVY-TSGRDQIKPKG CNTPAGAKVYTSGRDQKLPK-G

(c) t24: ubc9 vs. hak alignment differences (residues 931)

Correct: 36.2% Final: 40.2%
~MSGIALSRLAQERKAWRBHPFG MSG| ALSRLAQERKAWRRHPFG
MSTPARKRLMRDFK-RLOQRPAG MSTPARKRLMRDRRLQM@PPAG

(d) t28: egi vs. lel alignment differences (residues 490)

Correct: 46.7% Final: 49.0%
CTVNGGV--—-NTTLCPDHEGKC CTVNGGVNTLCPOEATCGKNC
CYDGNTWSSTLCP---DNEAK-NC CYDGNTWSSTLCPDNEAKNC

(e) t28: egi vs. tel aligment corretion (residues 259302)

AMPS:

NGSPSGNNVSITRKYQNGVDIPSAQPGGDTISEPS—————— ASAY-—-GGL
S GAINRYYVQNGVTRQ@NAELGYSGNELNDDSTAEEAEFGGSSFSBGL

Correct:

NGSPSGNLMSTRKYQONGWDIPS-AQ PG-GDTISSCP SASAYGGL
——————— G-A | NRYYVQNGVYFQ-QPNAELGSYSELNDDETAEEAEFGGSSFSDKGGL

Final:

NGSPSGNLMSTRKYQQNGYIPSA-—————— QPGGDTESCP————————— SASAYGGL

——————— SGA | NRYYVQNGYFQQPNAELGSYSGNELNICTAEEAEFGGSSFDKGGL

Figure 6.1: Differences between the alignment used for the modelling exercise
(labelled “Final”) and the correct alignment based on a structural superposi-
tion (labelled “Correct”) for CASP2 targets, and an example of an alignment
correction. In (a-c), the final sequence-based alignment used to build the model
is incorrect in comparison to the correct structure-based alignment. In (d), the
main chain region in egi/t28 residues 49-70 varies by more than 4.0 A between
the parent and the target structures, and a structural alignment in that region
is not meaningful. In (e) an example of an hand-modified alignment that is
correct is shown. The model constructed using the modified alignment (labelled
“Final”) is lower in C, RMSD by more than 2.0 A to the experimental structure
compared to the model constructed using the AMPS-generated alignment, con-
sidering only main chain regions that were copied from the parent. These regions
are indicated by a thick black line for part of the correct and final alignments in

(e).

172



Name of  All MC All MC Built MC Built MC Copied MC  Copied MC
target Built SC Copied SC  Built SC Copied SC  Built SC Copied SC
cgi/t28  46.5% (71) 52.3% (65) 49.0% (53) 53.2% (47) 38.9% (18)  50.0% (18)
ubc9/t24  45.2% (43) 46.0% (37) 56.0% (25) 63.2% (19) 33.3% (18)  33.3% (18)
csc/t9 47.4% (38)  40.0% (28) 69.6% (23) 46.2% (13) 13.3% (15)  33.3% (15)

Table 6.3: Analysis of side chain residues that were built using the clique finding
(CF) method for CASP2 targets. For each target (egi/t28, ubc9/t24, csc/t9),
the percentage of x; angles that deviate more than 30 ° for side chains that were
built using the CF method (labelled “Built SC”) is shown. For comparison, the
percentage error that would have resulted had those side chains been built using
the minimum perturbation (MP) method (labelled “Copied SC”) is shown. The
second and third columns (labelled “All MC”) make this comparison for all side
chains that were built on any main chain region, built or copied, the fourth
and fifth columns make this comparison for side chains that were built on main
chain regions not copied from a parent structure (labelled “Built MC”), and the
last two columns make this comparison for side chains that were built on main
chain regions that were copied from a parent structure (labelled “Copied MC”).
Numbers in parenthesis show the total number of y; angles that were considered
for the percentage error calculation.

imental structure is 1.92 A for the same number of residues. The hand-corrected

alignment matches the structural one exactly for these residues.

6.3.2 Side chain building

Table 6.3 shows the details of side chain construction for the various targets.
The percentage of y; angles that deviate more than 30° from the experimental
structure for side chains that were built using the CF method is shown. For
comparison, the percentage of y; angles that deviate more than 30° from the
experimental structure if the MP method had been used to build side chains for
those residues is also shown.

Table 6.3 shows that in cases were the parent main chain was copied, the
percentage error in the y; angles is significantly reduced in egi/t28 and csc/t9

by 11% and 20% respectively by building those side chains with the CF method.
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In the case of ubc9/t24, the percentage error is similar regardless of the method
used and the source of the main chain. However, when we consider the columns
labelled “All MC” in Table 6.3, we see that the percentage error in the case of
csc/t9 has risen (by 7%) upon using the CF method. This presumably reflects the
fact that the insertions in egi/t28 and ubc9/t24 were built relatively accurately,
leading to better predictions with the side chains, whereas the insertions in csc/t9
had large errors (Cae RMSDs greater than 3.0 A) leading to inaccurate side chain
predictions. These observations are supported by the data under the columns
labelled “Built MC” in Table 6.3.

Table 6.4 shows an analysis of side chains that were built on main chains
copied from the parent experimental structure using the CF method that had
an error in the x; angles of more than 30° relative to the target experimental
structure. Figures 6.2 and 6.3 show specific examples of side chain construction
using the CF method in csc/t9 and ubc9/t24 respectively.

There were seven side chains with incorrect x; angles in egi/t28, six in
ubc9/t24, and two in csc/t9. The C,-C, distance between the model and the ex-
perimental structure for the residue position, and the largest temperature factor
in any atom in the y; rotamer for the side chain is shown. Out of the fifteen side
chains containing errors in the y; angles, eight of the errors are associated with
the presence of high (> 30.0 L\Q) temperature factors in the side chain atoms
or a main chain shift in the residue C, (> 1.0 A) position in the model rela-
tive to the experimental structure. In two cases (W36 and Y94 in egi/t28), the
experimental conformation was not acceptable in the model because of clashes.
The clashes are directly attributable to main chain shifts between the target and

parent structures (which was used to construct the model) in either the residue
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Residue C,-C, Largest Problem
distance B

(A) (A?)
egi/t28
W36 0.87 20.7 experimental conformation clashes with model 172
built using the minimum perturbation method
E73 0.90 23.6 experimental conformation Oe; and model

G4 oxygen at 2.7 A (unfavourable electrostatics);
G4 B is 55.8 A2

Y94 0.30 16.0 experimental conformation clashes with model L.349
built using the minimum perturbation method;
L349 has a main chain shift of 2.62 A in the target
relative to the parent structure and
B for side chain atoms in 1349 is 39.7 A2

V119 0.46 49.0 high B

Q149 0.31 47.0 high B

E342 2.40 73.6 main chain shift; high B

T355 0.55 16.3 discriminatory function fails

ubc9/t24

R21 4.36 19.3 region of alignment error in model

R25 1.60 31.0 main chain shift in target relative to parent; high B

Ch1 0.22 17.5 discriminatory function fails

1.89 0.80 23.0 peptide flip over/shift in surrounding main chain
in target relative to the parent structure

K118 1.14 27.2 main cain shift in target relative to parent

Y142 1.33 21.3 main chain shift in target relative to parent

csc/t9

T11 0.93 20.1 interacts with region 14-24 (C, RMSD 5.23)

D66 4.72 95.9 main chain shift; high B

Table 6.4: Analysis of side chains with an error of more than 30° in the y; angle
built by using the clique finding method on main chains that were copied from
the parent experimental structure for CASP2 targets. For each residue with an
error in the y; angle, The distance between the C, atoms of the corresponding
residues in the experimental structure and the model, the largest temperature
factor (B) of any of the atoms determining the y; rotamer, and a brief comment
about the nature of the error is shown.

with the incorrect rotamer or in the residue with which it is clashing. In one
case (E73 in egi/t29), unfavourable contacts between the side chain atoms of
E73 to the main chain atoms of another residue (G4) might be responsible for

the incorrect prediction. The atoms in G4 have high temperature factors (<B>

1s 55.8 AZ), and the position of the carbonyl in G4 is different by 2.65 A in
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Figure 6.2: Comparison of some side chain conformations predicted (white) us-
ing the clique finding (CF) method to the experimental structure (black) for
cucumber stellacyanin (csc/t9). All the side chains shown were built on main
chain that was copied from the parent structure, where the CF method gen-
erally performs well (see Table 6.3). For csc/t9, the percentage of side chains
accurately predicted in the case of copied main chains is 86.7%.

the model relative to the experimental structure. In two cases (T355 in egi/t28
and C51 in ubc9/t24), it appears as if the discriminatory function is unable to
select the correct rotamer and in two other cases (T11 in ubc9/t24 and L89 in

csc/t9) the side chain built interacts with a main chain region that was predicted

incorrectly.
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F32

1117

Figure 6.3: Comparison of some side chain conformations predicted (white) using
the clique finding (CF) method to the experimental structure (black) for the
ubiquitin conjungating enzyme (ubc9/t24). All the side chains show (except for
L121 and L122, which are identities) were built on main chain that was copied
from the parent. However, for these residues, there is a main chain shift (>
1.0 A) in the target relative to the parent structure which generally results in
inaccurate side chain prediction.

6.3.3 Main chain building

Table 6.5 shows the details for the 22 main chain regions that were built using
the CF method, where the main chains were sampled by the database or grid
search methods described in the METHODS section. Table 6.6 gives the details
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Region # Sequence Parent Type Root Sample Region Problem

built RMSD RMSD range RMSD
(4) (4) (4) &)
egi/t28
42-48 7 HDANYNS 2.14 (D) 2.53 1.76-7.43 3.12 roots
* 78-81 4 AASG 1.15 (D) 0.60 0.68-2.49 0.77
96-103 8 PSSSGGYS 6.60 (2) 2.86 6.20-8.26 7.43 sampling/roots
155-161 7 GANQYNT 2.16 (D) 0.95 1.29-5.55 8.57 context
177-190 14 VQTWRNGTLNTSHQ 5.63 (D) 2.31 10.36-16.30 11.89 sampling/roots
* 214-219 6 CTATAC 2.76 (D) 1.02 1.02-3.54 1.14
+ 240-244 5 GDTVD 1.15 (D) 0.77 1.78-3.70 2.238
256-268 13 NTDNGSPSGNLVS 1.85 (7) 0.46 4.07-13.58 5.36 sampling
282-287 3 SAQPGG 6.23 (D) 5.64 3.28-7.29 5.02 sampling/roots
293-301 9 CPSASAYGG 2.31 (D) 2.82 3.66-10.50 8.70 sampling/roots
ubc9/t24
* 37-46 10 TKNPDGTMNL 2.32 (5) 0.85 1.72-9.20 2.64
+ 56-62 7 KKGTPWE 0.53 (0) 0.57 0.60-5.45 0.e0
+ 73-79 7 KDDYPSS 1.20 (0) 0.83 1.13-4.78 1.18
* 106-111 6 EEDKDW 1.44 (2) 0.66 1.32-4.77 2.38
164-166 3 APS 6.05 (1) 4.19 4.57-6.47 8.29 sampling/roots
csc/t9
1-2 2 GS - (2) 0.68 1.46-5.20 4.58 fitting error
14-24 11 SVPSSPNFYSQ 2.45 (4) 1.15 4.07-9.40 5.28 sampling
+ 42-45 4 PANA 1.92 (0) 0.45 1.33-2.64 1.90
* 51-57 7 METKQSF 1.55 (1) 0.50 1.07-5.18 1.57
77-83 7 ERLDELG 1.45 (1) 2.71 2.62-3.82 3.58 roots/alignment
90-93 4 TVGT 0.82 (0) 0.43 0.66-2.41 0.88
106-108 3 VAA 0.46 (2) 0.67 3.07-6.90 5.49 fitting error

Table 6.5: Analysis of the predictions of 22 main chain regions that were built
using the clique finding (CF) method for CASP2 targets. All RMSDs shown
are Co, RMSDs in A and are based on a global superposition of the structures
being compared. For each target (egi/t28, ubc9/t24, and csc/t9), the range
of residues in the built region, the number of residues in the built region, the
sequence of the region being built, the C, RMSD of the two root residues, the
Ca RMSD of the built region (not including the roots) between the model and
the target experimental structure, the C, RMSD for equivalent residues (-’ if
there were no equivalent residues) between the parent structure and the target
experimental structure, the region type in parenthesis (a number greater than 0
indicates there was an insertion of that many residues, a ‘D’ signifies a deletion,
and a 0 signifies a region that is neither an insertion or a deletion but was built
because we thought the main chain conformation would differ from the parent),
the range of C, RMSDs that were sampled, and a brief comment about the
nature of the problem in building the region accurately (if there was one). Bona
fide successful predictions where copying the parent would not have sufficed are
indicated by “*” and cases where the CF method works well (even though copying
the main chain from the parent would have sufficed) are indicated by ‘4.

of main chain region building process, including the interconnected manner in
which they were built (i.e., combining main chain and side chain possibilities
simultaneously).

Comparing the C, RMSD between the target experimental structure and

the model and the C, RMSD between the target experimental structure and the
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Regions Number of Number of side Overall

built main chain chain conformations Ca
conformations per main chain RMSD (&)
egi/t28
42-48 364 62 x 52 x3%° x11 ~6 x 10° 3.12
* 78-81,98-103 1013 x 586 ~ 6 x 10° 31 x 28 x 1% = 768 6.08
155-161,177-190 591 x 96 ~ 5 x 10° 213 % 18 = 8192 9.5
* 214-219 468 4% x 3% x 2% x 2! ~15x 105 1.14
+ 240-244 497 6% x 3% x1' ~10° 2.23
256-268 294 312 x 1% ~ 5 x 10° 5.36
282-287 973 6% x 3! x 1% ~2 x10* 5.02
293-301 991 62 x 3% x 51 ~10° 8.70
ubc9/t24
* 37-46,73-79,106-111 517 X 451 x 461 ~ 10°  2° x 12° = 32 2.22
+ 56-62 461 66 x 32 x12 ~4 x10° 0.60
164-166 78 6% x 31 x 12 = 3888 6.29
csc/t9
+  42-45,90-93 456 X 311 ~ 14 x 107 3% x 1T =729 1.47
77-83,106-108 205 X 102 ~ 2 x 104 310 x 13 ~ 6 x 10 4.24
1-2 1256 6% x 31 ~ 14 x 10* 4.53
14-24 595 313 x12 ~ 108 5.23
* 51-57 133 62 x 319 ~ 2 x 10° 1.57

Table 6.6: Computational details of 22 main chains that were built using
the clique finding (CF) method for CASP2 targets. For each target (egi/t28,
ubc9/t24, and csc/t9) the regions that were built (in the case of multiple re-
gions built simultaneously, the regions are all indicated in a single row), the
number of possible main chain conformations (in the case of multiple regions,
this is the product of the number of possible conformations of each of the re-
gions), the number of side chain conformations per main chain, and the overall
Co RMSD between the experimental structure and the model with the lowest
negative log conditional probability based on a global superposition is given.
The total number of conformations explored is the product of the number of
side chain conformations times the number of side chain conformations per main
chain. The sum of the exponents for the side chain conformations represent
the number of side chains for which conformations were varied. The mantissa
indicates the number of side chain conformations for each of the residues in the
exponent. A mantissa of one indicates that only one side chain conformation
was considered per residue (an alanine, glycine, or proline residue except in the
case of ubc9/t24 residues 37-46, 73-79 and 106-111). In cases where the sum
of the exponents exceeds the number of residues in the region being built, the
excess number indicates the number of side chain positions in the environment
where multiple side chain conformations were explored. Bona fide successful
predictions for at least one of the regions being built where copying the parent
would not have sufficed are indicated by ‘*’ and cases where the CF method
works well (even though copying the main chain from the parent would have
sufficed) are indicated by ‘+’. Residues 78-81 and 96-103, in egi/t28, have an
overall combined C, RMSD of 6.08 A but the individual RMSDs are 0.77 and
7.43 respectively. The total number of conformations explored, considering both
side chain and main chain conformations simultaneously, is generally in the order
of 10°-10'" conformations.
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parent for each built region, we see that in ten of built regions, the C, RMSDs
are similar to, and in some cases better than, the C, RMSD had we simply
copied the parent main chain.

There are five regions corresponding to insertions that represent accurate
and bona fide blind predictions where simply copying the parent would not have
sufficed (these rows are prefixed by an ‘“*’ in Table 6.5). The sizes of these regions
range from four to ten residues (with sizes of the insertions ranging from one
to five residues) with C, RMSDs ranging from 0.77 A (for a four residue region
involving deletion) to 2.64 A (for a ten residue region involving a five residue
insertion). One of the more dramatic predictions include the construction of
three regions in ubc9/t24 (residues 37-46, 73-79, and 106-111) simultaneously
with an overall C, RMSD of 2.22 A for the 23 residues (Figure 6.4).

There are another five regions where copying the parent would have generally
sufficed for building these regions (rows are prefixed by a ‘4’ in Table 6.5)
but were built using the CF method because we thought these regions would
vary. However, these cases illustrate that the CF method works well and the C,
RMSDs range from 0.60 A to 2.23 A.

The last column in Table 6.5 makes a brief comment about the nature of
problem for each main chain that had a C, RMSD greater than 3.0 A between
the model and the experimental structure. Out of the twelve regions that had
large C, RMSDs, nine of them were predicted incorrectly due to either lack
of adequate sampling (no conformation with a C, RMSD lesser than 3.0 A),
large C, RMSDs for the two root residues (greater than 2.0 A), or both. In
two of the cases (csc/t9 residues 1-2 and residues 106-108), a technical error in

which the main chains returned by the grid search method were fitted incorrectly
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106-111 (2.64 A) 37-46 (2.38 A)

T37
E106

K73
S79
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73-79 (0.60 A)

Figure 6.4: Comparison of conformations predicted (white) using the clique find-
ing (CF) method to the experimental structure (black) for three context-sensitive
regions in the ubiquitin conjugating enzyme. Shown are C, traces of three re-
gions, residues 37-46 (five residue insertion), 73-79, and 106-111 (two residue
insertion), which were built simultaneously using the CF method with individ-
ual Co, RMSDs of 2.64 A, 0.60 A, and 2.38 A for each region respectively, and an
overall C, RMSD of 2.22 A for all the 23 residues relative to the experimental
structure. The C, RMSDs do not include the root residues and are based on a
global superposition.

to the framework led to incorrect predictions. In one case (egi/t28 residues
155-161), we sample main chains with C, RMSDs between 1.29 A and 5.55

A, have a C4 RMSD of 0.95 A in the root positions, but the predicted region
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has a Co RMSD of 3.57 A. This error is due to the fact that this region in
egi/t28 interacts with residues 177-190, which could not have been predicted
accurately due to inadequate sampling. These two regions are interconnected
and cannot be built separately, and if the main chain in one region cannot be
sampled adequately, then the other region is likely be predicted incorrectly. This
example illustrates the importance of handling context-sensitivity when building
comparative models.

Figure 6.5 compares the C, trace of the ubc9/t24 complete model to its

corresponding experimental structure.

6.3.4 Model refinement

After energy minimization, the C, RMSD between the model and experimental

structure increased slightly, as at CASP1 (see Chapter 2).

6.3.5 Overall accuracies of the model compared to the

experimental structure

Table 6.7 shows the overall C, and all-atom RMSDs, and the percentage errors
for x; and all x angles, between the model and the experimental structure for

each of the four targets.
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Figure 6.5: Visual comparison between the model and the experimental structure
(black) for the ubiquitin conjugating enzyme illustrating regions of main chain
that were copied from the parent structure (grey) and regions that were built
using the clique finding (CF) method (white). This protein was modelled by us
for CASP2 with a C, RMSD of 2.47 A. The RMSDs for the built regions are
available in Table 6.5.

6.4 Discussion

6.4.1 Alignment

At the first meeting on the Critical Assessment of protein Structure Prediction

methods (CASP1), we learned that automated sequence alignment methods are

183



Target C. All-atom x1 > 30°  All y > 30°
(number) RMSD (A) RMSD (A) (%) (%)

cgi/t28  3.37 (371) 3.76 (2735) 33.8 (287) 40.2 (524)
nbc9/t24 2.47 (158)  3.29 (1266) 47.5 (120) 48.2 (284)
csc/t9  2.75(108)  4.00 (837)  38.9 (90)  49.7 (171)
pnsl/td  7.38 (76)  8.13 (583) 54.1 (61)  61.0 (141)

Table 6.7: Accuracy of the models that were built compared to the experimental
structures for CASP2 targets. The C, and all-atom RMSDs, and the percentage
errors in Y and all y torsions between the model and the experimental structures
are given. The numbers listed in parenthesis are the number of atoms/y angles
considered for all residues.

inadequate and that a visual inspection is necessary to optimise the alignment.
However, at CASP1, we were lucky that all optimisations by hand based on
sequence identity proved to be correct. Here, only one such optimisation in
egi/t28 produced the correct alignment (Figure 6.1e). The other hand corrected
alignment in pnsl/t24 was wrong (Figure 6.1a). This particular error could be
attributed to the low level of global sequence identity in the target. However,
in ubc9/t24 (Figure 6.1c), the structural alignment differs significantly from the
sequence based one, and visual inspection of the alignment would have yielded
no clues about the shift in the helix in that region. In fact, in all cases the
correct structure-based alignments have a lower percentage sequence identity
than the sequence alignments that were used (Figure 6.1). This indicates that a
sequence alignment that relies on percentage identity or homology alone cannot
effectively produce the correct alignment, and that visual inspection and hand-
optimisation of alignments has its limits. As we suggest in Chapter 2, better
alignment methods that take structural information into account need to be

developed.
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6.4.2 Side chains

The percentage error in all the x angles built using the minimum perturbation
(MP) method at CASP1 for three targets was around 50.0% (Table 2.2) and the
overall accuracy in x; angles was around 45% (Table 5 in [8]). These results taken
together with the data in Tables 6.3 and 6.7 and suggest that there is utility to
building side chains taking interconnectedness into account. However, we were
unable to handle more than eighteen residues simultaneously due to tractability
issues—the clique finding algorithm can handle problems of sizes that correspond
to systematically exploring between 10? and 10'° conformations.

Table 6.3 also shows that the error in building side chains on insertions,
deletions, and regions of main chain variation is significantly higher than when
building side chains where the main chain is copied from another parent struc-
tures. This reflects the inaccuracies in the main chain building process, and
reflects the fact that side chain prediction is limited by the accuracy of the main
chain predicted [60]. As at CASP1, the problem in analysing the accuracy of
predicted side chains is hampered by the fact that experimental structure itself

contains atoms in the side chain with large temperature factors (Table 6.4).

6.4.3 Main chains

Building main chains in an interconnected manner (i.e., building multiple main
chains and side chains in the environment simultaneously) has improved the
predictability of insertions and deletions. At CASP1, none of the insertions and
deletions were predicted accurately—in the case of models that were built by

us, none of the insertions and residues flanking deletions had a C, RMSD less

than 3.0 A (Chapter 2). At CASP2, five of the insertions and residues flanking
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deletions have C, RMSDs less than 3.0 A.

Even though regions that did not correspond to insertions or deletions were
built by the CF method and predicted accurately with C, RMSDs less than
2.0 A to the experimental structure, the C, RMSD had we just copied the
parent would have produced similar results (see Table 6.5). However, we could
not predict in advance whether these regions would vary or remain conserved
between the target and the parent structures and all the predictions made by
CF method for these regions were reasonably accurate.

There are other regions of main chain variation that were not built by us
where the C, RMSD does vary significantly between the parent and the experi-
mental structure. This was partly due to the fact that we were not accurate at
predicting exactly which main chain regions would vary, and in cases where we
suspected a main chain variation would occur, we did not have the computational

resources to build the entire region.

6.4.4 Bona fide prediction

Traditional side chain and main chain building methods are tested by building
(i.e., reproducing) side chains and main chains given the context of the original
experimental structure [50, 51, 52, 53, 54, 55, 56, 57]. The stark contrast between
the results in Chapters 3, 4 and 5 and the results in Tables 6.5 and 6.3 for main
chain and side chain construction highlight the importance and difficulty of bona
fide prediction, when the correct answer is not known in advance.

While the results at CASP2 are encouraging in the sense that they are better
than the results at CASP1, more work lies ahead in improving the method

described in this work so it is robust at prediction in approximate environments.
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6.5 Summary

We constructed five comparative models in a blind manner for the second meeting
on the Critical Assessment of protein Structure Prediction methods (CASP2).
The method used is based on a novel graph-theoretic clique finding approach,
and attempts to address the problem of interconnected structural changes in the
comparative modelling of protein structures. We discuss briefly how the method
is used for protein structure prediction, and detail how it performs in the blind
tests. We find that compared to CASP1, significant improvements in building
insertions and deletions and side chain conformations have been achieved.

The final conclusions chapter compares the progress of our comparative mod-
elling approach from CASP1 to CASP2 and discusses the prospects of this ap-

proach for handling the protein structure prediction problem.
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Chapter 7

Conclusion

7.1 Progress of comparative modelling

Given the differences in the difficulty of targets predicted at the first and second
experiments on the Critical Assessment of protein Structure Prediction methods
(CASP1 and CASP2), it is hard to compare progress from one experiment to the
next. Figure 7.1 illustrates an attempt to do this, by measuring the difficulty of
building a model by taking the product of the fraction of non-identical residues
and the fraction of residues in insertions and deletions, and plotting it against
the C, RMSD of the models relative to the experimental structure. The results
indicate that even though the models at CASP2 were more difficult to build, the
Co, RMSD has gotten better. Taken in conjunction with the results presented
in Chapter 6, this suggests that progress indeed has been made in comparative
model building in the years between the two experiments by taking into account
the context-sensitivity of interactions seen in protein structures.

In terms of methodology, we have moved forward from CASP1 in the follow-

ing ways: we can now sample relatively large numbers of side chain and main
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Figure 7.1: Plot of C, RMSD vs. the difficulty index for models of targets from
the first and second experiments on the Critical Assessment of protein Structure
Prediction methods (CASP 1 and 2). The thick line represents CASP1 targets
and the dashed line represents CASP2 targets. The difficulty index is the the
product of the fraction of non-identical residues and the fraction of residues in
insertions and deletions. The larger the index, the more difficult it is to build
the model for that target.

chain conformations using the clique finding method. We have also developed a
discriminatory function that is fairly accurate and allows for fast evaluation of a
conformation when used by the clique finding method. The side chain and main

chain approximation methods, while not completely adequate, have helped us

build regions in a model in an interconnected manner that we were unable to do

at CASP1.
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7.2 The road ahead

The first implementation of the graph-theoretic clique finding approach shows
a great deal of promise. However, while we see some improvements in building
side chains and regions of main chain in an interconnected manner, the results
at CASP2 show that we still have a long way to go before we can build models
that rival experiment in accuracy.

We see room for further improvement in the methodology described here:
from the results shown in Chapters 3 and s6, it appears as if the discriminatory
function is generally able to select the correct conformation if it is present in the
sample space. A transformation of the conditional probabilitities for discrete
distance values into a continuous function may enable us to refine the final
model produced by the graph-theoretic clique finding method.

Main chain sampling algorithms which generate conformations that are closer
to the experimental structure need to be developed. These could involve sys-
tematic searching of all main chain conformations for a given region and using
filters and clustering to reduce the number of conformations considered [59].

Improved side chain sampling methods that further narrow down the choices
for a residue conformation will help in reducing the number of nodes in a graph.
This can be accomplished through the aid of a main chain dependent rotamer
library [52, 131]

The clique finding method is still limited in terms of the numbers of con-
formations it can handle. Improvement in clique finding algorithms by using
approximation algorithms, and filtering based on weights of nodes and edges,
will enable us to build a greater numbers of side chains and larger main chain

regions simultaneously, compared to the size of problems we handle in this work.
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7.3 Final remarks

The protein structure prediction problems remains one of the fundamental un-
solved problems in molecular biology. However, comparative modelling methods
provide hope in at least predicting structures where the sequences are related.
This should prove to be extremely useful in deducing protein structure-function
relationships in whole organisms given the huge number of sequences being pro-
duced by the genome sequencing projects, where at least a quarter of the cur-
rently known protein sequences belong to protein families for which there are
structures in the Protein Data Bank [169)].

The concept of a clique offers a way to elegantly represent the web of inter-
actions seen in proteins, and also to cluster them flexibly and efficiently. The
general properties of cliques, which readily describe the nature of protein struc-
tures, lead us to believe that the approaches outlined here can be extended to
other categories of structure prediction, such as fold recognition and ab initio

modelling.
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Appendix A

Visual overview

A.1 Visual comparison between the model and

the corresponding experimental structure

for CASP1 and CASP2 targets
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Figure A.1: Visual comparison between the model (white) and the experimental
structure (black) for the histidine-containing phosphocarrier protein [63]. This
protein was modelled by us for the first meeting on the Critical Assessment of

protein Structure Prediction methods (CASP1) with a C, RMSD of 1.18 A.
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Figure A.2: Visual comparison between the model (white) and the experimental
structure (black) for the cellular retinoic acid binding protein I [65]. This protein

was modelled by us for CASP1 with a C, RMSD of 2.01 A.
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Figure A.3: Visual comparison between the model (white) and the experimental
structure (black) for the eosinophil derived neurotoxin [66]. This protein was

modelled by us for CASP1 with a C, RMSD of 4.55 A.
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Figure A.4: Visual comparison between the model (white) and the experimental
structure (black) for endoglucanase I [153]. This protein was modelled by us for
the second meeting on the Critical Assessment of protein Structure Prediction

methods (CASP2) with a C, RMSD of 3.37 A.
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Figure A.5: Visual comparison between the model (white) and the experimental
structure (black) for the ubiquitin conjugating enzyme [152]. This protein was

modelled by us for CASP2 with a C, RMSD of 2.47 A.
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Figure A.6: Visual comparison between the model (white) and the experimental
structure (black) for cucumber stellacyanin [151]. This protein was modelled by

us for CASP2 with a C, RMSD of 2.75 A.
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Figure A.7: Visual comparison between the model (white) and the experimental
structure (black) for the polyribonucleotide nucleotidyl s-transferase [150]. This
protein was modelled by us for CASP2 with a C, RMSD of 7.38 A.
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